

Lecture 16

Dynamic Programming

CS 161 Design and Analysis of Algorithms Ioannis Panageas

Dynamic Programming

Dynamic Programming

Dynamic programming

Dynamic Programming

Dynamic programming

- Avoids brute force search

Dynamic Programming

Dynamic programming

- Avoids brute force search
- Somewhat Similar to D\&C, but there are major differences

Dynamic Programming

Dynamic programming

- Avoids brute force search
- Somewhat Similar to D\&C, but there are major differences
- Takes some practice to get used to

Dynamic Programming

Dynamic programming

- Avoids brute force search
- Somewhat Similar to D\&C, but there are major differences
- Takes some practice to get used to

Note: This is difficult material.

Dynamic Programming

Dynamic programming

- Avoids brute force search
- Somewhat Similar to D\&C, but there are major differences
- Takes some practice to get used to

Note: This is difficult material. Readings:

Dynamic Programming

Dynamic programming

- Avoids brute force search
- Somewhat Similar to D\&C, but there are major differences
- Takes some practice to get used to

Note: This is difficult material. Readings:

- [GT]: Chapter 12

Dynamic Programming

Dynamic programming

- Avoids brute force search
- Somewhat Similar to D\&C, but there are major differences
- Takes some practice to get used to

Note: This is difficult material. Readings:

- [GT]: Chapter 12
- [CLRS] Chapter 15

Dynamic Programming

Dynamic programming

- Avoids brute force search
- Somewhat Similar to D\&C, but there are major differences
- Takes some practice to get used to

Note: This is difficult material. Readings:

- [GT]: Chapter 12
- [CLRS] Chapter 15
- [Kleinberg and Tardos], Chapter 6

Dynamic Programming vs. Recursion

Dynamic Programming vs. Recursion

- Dynamic programming be thought of as being the reverse of recursion

Dynamic Programming vs. Recursion

- Dynamic programming be thought of as being the reverse of recursion
- Similar to D\&C:

Dynamic Programming vs. Recursion

- Dynamic programming be thought of as being the reverse of recursion
- Similar to D\&C:
- Is based on a recurrence

Dynamic Programming vs. Recursion

- Dynamic programming be thought of as being the reverse of recursion
- Similar to D\&C:
- Is based on a recurrence
- Obtains problem solution by using subproblem solutions

Dynamic Programming vs. Recursion

- Dynamic programming be thought of as being the reverse of recursion
- Similar to D\&C:
- Is based on a recurrence
- Obtains problem solution by using subproblem solutions
- Opposite of D\&C:

Dynamic Programming vs. Recursion

- Dynamic programming be thought of as being the reverse of recursion
- Similar to D\&C:
- Is based on a recurrence
- Obtains problem solution by using subproblem solutions
- Opposite of D\&C:
- Works from small problems to large problems

Dynamic Programming vs. Recursion

- Dynamic programming be thought of as being the reverse of recursion
- Similar to D\&C:
- Is based on a recurrence
- Obtains problem solution by using subproblem solutions
- Opposite of D\&C:
- Works from small problems to large problems
- Motivated by recursion but does not actually use recursion

Dynamic Programming vs. Recursion

- Dynamic programming be thought of as being the reverse of recursion
- Similar to D\&C:
- Is based on a recurrence
- Obtains problem solution by using subproblem solutions
- Opposite of D\&C:
- Works from small problems to large problems
- Motivated by recursion but does not actually use recursion
- Avoids redundantly solving the same subproblem multiple times by storing subproblem solutions

Dynamic Programming vs. Recursion

- Dynamic programming be thought of as being the reverse of recursion
- Similar to D\&C:
- Is based on a recurrence
- Obtains problem solution by using subproblem solutions
- Opposite of D\&C:
- Works from small problems to large problems
- Motivated by recursion but does not actually use recursion
- Avoids redundantly solving the same subproblem multiple times by storing subproblem solutions
- This requires careful indexing of subproblems

Dynamic Programming vs. Recursion

Dynamic Programming vs. Recursion

- Recursion is top-down

Dynamic Programming (DP) is bottom-up

Dynamic Programming vs. Recursion

- Recursion is top-down

Dynamic Programming (DP) is bottom-up

- Recursion solves all relevant subproblems DP may also solve some irrelevant subproblems

Dynamic Programming vs. Recursion

- Recursion is top-down

Dynamic Programming (DP) is bottom-up

- Recursion solves all relevant subproblems DP may also solve some irrelevant subproblems
- Recursion may solve some subproblems many times DP solves each subproblem only once

Dynamic Programming vs. Recursion

- Recursion is top-down Dynamic Programming (DP) is bottom-up
- Recursion solves all relevant subproblems DP may also solve some irrelevant subproblems
- Recursion may solve some subproblems many times DP solves each subproblem only once

	D\&C /	Memoized	Dynamic Recursion
Recursion	Programming		
Basic approach	recursion	recursion	iteration
Use of recurrence	top-down	top-down	bottom-up
Store subproblem solutions	No	Yes	Yes
Space needed for stack	Yes	Yes	No

Problem: Weighted interval scheduling

Problem: Weighted interval scheduling

- Input: Collection of n Intervals represented by Start Time, Finish Time, and Value: $(s(j), f(j), v(j))$.

Problem: Weighted interval scheduling

- Input: Collection of n Intervals represented by Start Time, Finish Time, and Value: $(s(j), f(j), v(j))$.
- Problem: Find a non-overlapping set of intervals that maximizes the total value.

Problem: Weighted interval scheduling

- Input: Collection of n Intervals represented by Start Time, Finish Time, and Value: $(s(j), f(j), v(j))$.
- Problem: Find a non-overlapping set of intervals that maximizes the total value.
- Example:

j	$s(j)$	$f(j)$	$v(j)$
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1

Weighted interval scheduling problem: Preprocessing

Weighted interval scheduling problem: Preprocessing

1. Sort the intervals by finishing time.

j	$s(j)$	$f(j)$	$v(j)$
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1

	0	1	2	3	4	5	6	7	8	9	10	11	12
1				2									

Weighted interval scheduling problem: Preprocessing

1. Sort the intervals by finishing time. (Here they are already sorted).

j	$s(j)$	$f(j)$	$v(j)$
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1

	0	1	2	3	4	5	6	7	8	9	10	11	12
1				2									

Weighted interval scheduling problem: Preprocessing

1. Sort the intervals by finishing time. (Here they are already sorted).
2. For each interval j, define $p(j)$ to be:

j	$s(j)$	$f(j)$	$v(j)$
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1

	0	1	2	3	4	5	6	7	8	9	10	11	12
1				2									

Weighted interval scheduling problem: Preprocessing

1. Sort the intervals by finishing time. (Here they are already sorted).
2. For each interval j, define $p(j)$ to be:

- The highest-numbered interval $i<j$ that does not overlap interval j (if such an interval exists)

j	$s(j)$	$f(j)$	$v(j)$
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1

	0	1	2	3	4	5	6	7	8	9	10	11	12
1				2									

Weighted interval scheduling problem: Preprocessing

1. Sort the intervals by finishing time. (Here they are already sorted).
2. For each interval j, define $p(j)$ to be:

- The highest-numbered interval $i<j$ that does not overlap interval j (if such an interval exists)
- 0 (if no such an interval exists)

j	$s(j)$	$f(j)$	$v(j)$
1	1	3	2
2	2	6	4
3	5	7	4
4	4	10	7
5	8	11	2
6	9	12	1

Weighted interval scheduling problem: Preprocessing

1. Sort the intervals by finishing time. (Here they are already sorted).
2. For each interval j, define $p(j)$ to be:

- The highest-numbered interval $i<j$ that does not overlap interval j (if such an interval exists)
- 0 (if no such an interval exists)

j	$s(j)$	$f(j)$	$v(j)$	$p(j)$
1	1	3	2	0
2	2	6	4	0
3	5	7	4	1
4	4	10	7	1
5	8	11	2	3
6	9	12	1	3

Simple recursive algorithm

Simple recursive algorithm

For the problem on intervals 1 through j :

Simple recursive algorithm

For the problem on intervals 1 through j :

- Either the optimal solution contains the last interval or it doesn't

Simple recursive algorithm

For the problem on intervals 1 through j :

- Either the optimal solution contains the last interval or it doesn't
- If it does:

Simple recursive algorithm

For the problem on intervals 1 through j :

- Either the optimal solution contains the last interval or it doesn't
- If it does:
- The optimal value is $v(j)$ plus the value of the optimal collection from $1, \ldots, p(j)$

Simple recursive algorithm

For the problem on intervals 1 through j :

- Either the optimal solution contains the last interval or it doesn't
- If it does:
- The optimal value is $v(j)$ plus the value of the optimal collection from $1, \ldots, p(j)$
- If it does not:

Simple recursive algorithm

For the problem on intervals 1 through j :

- Either the optimal solution contains the last interval or it doesn't
- If it does:
- The optimal value is $v(j)$ plus the value of the optimal collection from $1, \ldots, p(j)$
- If it does not:
- optimal value is the value of the optimal collection from $1, \ldots, j-1$

Simple recursive algorithm

For the problem on intervals 1 through j :

- Either the optimal solution contains the last interval or it doesn't
- If it does:
- The optimal value is $v(j)$ plus the value of the optimal collection from $1, \ldots, p(j)$
- If it does not:
- optimal value is the value of the optimal collection from $1, \ldots, j-1$
- So the optimal value is the maximum of these two possible values:

Simple recursive algorithm

For the problem on intervals 1 through j :

- Either the optimal solution contains the last interval or it doesn't
- If it does:
- The optimal value is $v(j)$ plus the value of the optimal collection from $1, \ldots, p(j)$
- If it does not:
- optimal value is the value of the optimal collection from

$$
1, \ldots, j-1
$$

- So the optimal value is the maximum of these two possible values:

```
def OPT(j):
    if j = 0: return 0
    else: return max(v(j)+OPT(p(j)), OPT(j-1))
```


Simple recursive algorithm

For the problem on intervals 1 through j :

- Either the optimal solution contains the last interval or it doesn't
- If it does:
- The optimal value is $v(j)$ plus the value of the optimal collection from $1, \ldots, p(j)$
- If it does not:
- optimal value is the value of the optimal collection from

$$
1, \ldots, j-1
$$

- So the optimal value is the maximum of these two possible values:

```
def OPT(j):
    if j = 0: return 0
    else: return max(v(j)+OPT(p(j)), OPT(j-1))
```

Correct, but very inefficient because ...

Simple recursive algorithm

For the problem on intervals 1 through j :

- Either the optimal solution contains the last interval or it doesn't
- If it does:
- The optimal value is $v(j)$ plus the value of the optimal collection from $1, \ldots, p(j)$
- If it does not:
- optimal value is the value of the optimal collection from

$$
1, \ldots, j-1
$$

- So the optimal value is the maximum of these two possible values:

```
def OPT(j):
    if j = 0: return 0
    else: return max(v(j)+OPT(p(j)), OPT(j-1))
```

Correct, but very inefficient because ...

- the same value of $\operatorname{OPT}()$ is recomputed multiple times.

Memoizing the recursion

Memoizing the recursion

- We can avoid recomputing OPT() values by storing them

Memoizing the recursion

- We can avoid recomputing OPT() values by storing them
- So we just look up a previously computed value rather than recomputing it

Memoizing the recursion

- We can avoid recomputing OPT() values by storing them
- So we just look up a previously computed value rather than recomputing it
- Declare an array $M[1 . . n]$, where each entry can contain an integer or "undefined"

Memoizing the recursion

- We can avoid recomputing OPT() values by storing them
- So we just look up a previously computed value rather than recomputing it
- Declare an array $M[1 . . n]$, where each entry can contain an integer or "undefined"
- Initialize all entries to "undefined"

Memoizing the recursion

- We can avoid recomputing OPT() values by storing them
- So we just look up a previously computed value rather than recomputing it
- Declare an array $M[1 . . n]$, where each entry can contain an integer or "undefined"
- Initialize all entries to "undefined"

```
def Memoized_OPT(j):
    if j = 0: return(0);
    else:
        if M[j] = "undefined" :
        M[j] = max(v(j)+Memoized_OPT(p(j)), Memoized_OPT(j-1))
        return (M[j])
```


Analysis of Memoized Algorithm

Analysis of Memoized Algorithm

```
def Memoized_OPT(j):
    if j = 0: return(0);
    else:
    if M[j] = "undefined" :
        M[j] = max(v(j)+Memoized_OPT(p(j)), Memoized_OPT(j-1))
    return (M[j])
Memoized_OPT(n)
```


Analysis of Memoized Algorithm

```
def Memoized_OPT(j):
    if j = 0: return(0);
    else:
        if M[j] = "undefined" :
        M[j] = max(v(j)+Memoized_OPT(p(j)), Memoized_OPT(j-1))
    return (M[j])
Memoized_OPT(n)
```

Run Memoized_OPT on a collection of n intervals:

Analysis of Memoized Algorithm

```
def Memoized_OPT(j):
    if j = 0: return(0);
    else:
    if M[j] = "undefined" :
        M[j] = max(v(j)+Memoized_OPT(p(j)), Memoized_OPT(j-1))
    return (M[j])
Memoized_OPT(n)
```

Run Memoized_OPT on a collection of n intervals:

- For every pair of recursive calls, an entry of M gets filled in.

Analysis of Memoized Algorithm

```
def Memoized_OPT(j):
    if j = 0: return(0);
    else:
    if M[j] = "undefined" :
        M[j] = max(v(j)+Memoized_OPT(p(j)), Memoized_OPT(j-1))
    return (M[j])
Memoized_OPT(n)
```

Run Memoized_OPT on a collection of n intervals:

- For every pair of recursive calls, an entry of M gets filled in.
- Hence, $O(n)$ calls.

Dynamic Programming Solution

Dynamic Programming Solution

- In memoized recursion, we entered a value in the M array based on values that appear earlier in that array

Dynamic Programming Solution

- In memoized recursion, we entered a value in the M array based on values that appear earlier in that array
- Instead of computing the entries in array M recursively, we can:

Dynamic Programming Solution

- In memoized recursion, we entered a value in the M array based on values that appear earlier in that array
- Instead of computing the entries in array M recursively, we can:
- Get rid of the recursion entirely

Dynamic Programming Solution

- In memoized recursion, we entered a value in the M array based on values that appear earlier in that array
- Instead of computing the entries in array M recursively, we can:
- Get rid of the recursion entirely
- Compute the array entries iteratively

Dynamic Programming Solution

- In memoized recursion, we entered a value in the M array based on values that appear earlier in that array
- Instead of computing the entries in array M recursively, we can:
- Get rid of the recursion entirely
- Compute the array entries iteratively
- This is the dynamic programming solution.

Dynamic Programming Solution

- In memoized recursion, we entered a value in the M array based on values that appear earlier in that array
- Instead of computing the entries in array M recursively, we can:
- Get rid of the recursion entirely
- Compute the array entries iteratively
- This is the dynamic programming solution.

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```


Dynamic Programming Solution

- In memoized recursion, we entered a value in the M array based on values that appear earlier in that array
- Instead of computing the entries in array M recursively, we can:
- Get rid of the recursion entirely
- Compute the array entries iteratively
- This is the dynamic programming solution.

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```

- Simple, efficient code.

Dynamic Programming Solution

- In memoized recursion, we entered a value in the M array based on values that appear earlier in that array
- Instead of computing the entries in array M recursively, we can:
- Get rid of the recursion entirely
- Compute the array entries iteratively
- This is the dynamic programming solution.

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```

- Simple, efficient code.
- Runs in $O(n)$ time.

Computing the Optimal Set of Intervals

Computing the Optimal Set of Intervals

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```


Computing the Optimal Set of Intervals

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```

- There is one issue here:

Computing the Optimal Set of Intervals

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```

- There is one issue here:
- The algorithm given above computes the value of an optimal interval set, but not the intervals themselves.

Computing the Optimal Set of Intervals

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```

- There is one issue here:
- The algorithm given above computes the value of an optimal interval set, but not the intervals themselves.
- This is a standard with dynamic programming problems. We usually proceed in two steps.

Computing the Optimal Set of Intervals

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```

- There is one issue here:
- The algorithm given above computes the value of an optimal interval set, but not the intervals themselves.
- This is a standard with dynamic programming problems. We usually proceed in two steps.

1. We first consider how to compute the optimum cost or value

Computing the Optimal Set of Intervals

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```

- There is one issue here:
- The algorithm given above computes the value of an optimal interval set, but not the intervals themselves.
- This is a standard with dynamic programming problems. We usually proceed in two steps.

1. We first consider how to compute the optimum cost or value
2. Once we know how to compute the optimum cost or value, we then consider how to compute a configuration that has the optimum cost or value.

Computing the Optimal Set of Intervals

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```

- There is one issue here:
- The algorithm given above computes the value of an optimal interval set, but not the intervals themselves.
- This is a standard with dynamic programming problems. We usually proceed in two steps.

1. We first consider how to compute the optimum cost or value
2. Once we know how to compute the optimum cost or value, we then consider how to compute a configuration that has the optimum cost or value.

- Compute additional information (usually an additional array) as we compute the optimum cost or value.

Computing the Optimal Set of Intervals

```
def Iterative_OPT:
    M[0] = 0
    for j = 1 to n:
        M[j] = max(v(j)+M[p(j)],M[j-1])
```

- There is one issue here:
- The algorithm given above computes the value of an optimal interval set, but not the intervals themselves.
- This is a standard with dynamic programming problems. We usually proceed in two steps.

1. We first consider how to compute the optimum cost or value
2. Once we know how to compute the optimum cost or value, we then consider how to compute a configuration that has the optimum cost or value.

- Compute additional information (usually an additional array) as we compute the optimum cost or value.
- Run a post-processing step that uses this additional information

Computing the Optimal Set of Intervals

Computing the Optimal Set of Intervals

- For each j, we remember whether the optimal set for the first j intervals contains interval j.

Computing the Optimal Set of Intervals

- For each j, we remember whether the optimal set for the first j intervals contains interval j.
- We compute two arrays:

Computing the Optimal Set of Intervals

- For each j, we remember whether the optimal set for the first j intervals contains interval j.
- We compute two arrays:
- M[j] stores the best value we can get from the first j intervals (as before)

Computing the Optimal Set of Intervals

- For each j, we remember whether the optimal set for the first j intervals contains interval j.
- We compute two arrays:
- M[j] stores the best value we can get from the first j intervals (as before)
- keep[j] stores whether the best choice for the first j intervals includes interval j

Computing the Optimal Set of Intervals

- For each j, we remember whether the optimal set for the first j intervals contains interval j.
- We compute two arrays:
- M[j] stores the best value we can get from the first j intervals (as before)
- keep[j] stores whether the best choice for the first j intervals includes interval j

```
def Iterative_OPT:
    M[O] = 0
    for j = 1 to n:
        if v(j)+M[p(j)] > M[j-1]:
        M[j] = v(j)+M[p(j)]
            keep[j] = True
        else:
            M[j] = M[j-1]
            keep[j] = False
```


Computing the Optimal Set of Intervals, continued

Computing the Optimal Set of Intervals, continued

Once we have computed the two arrays M[] and keep []:

Computing the Optimal Set of Intervals, continued

Once we have computed the two arrays M[] and keep []:

```
def PrintSolution(j):
    if j = 0: return;
    if keep[j]:
        PrintSolution(p(j))
        print(j)
    else:
        PrintSolution(j-1)
PrintSolution(n)
```


Our example

Our example

Our example

j	$s(j)$	$f(j)$	$v(j)$	$p(j)$		$01^{1} 23$	$4{ }^{4} 6$	$88 \quad 9 \quad 10 \quad 11 \quad 12$
1	1	3	2	0		-		
2	2	6	4	0		-	4	
3	5	7	4	1			\square	
4	4	10	7	1			\%	
5	8	11	2	3				\square
6	9	12	1	3				1

	0	2	4	6	9	9	9	
eep		T	T	T	T	F		

Our example

j	$s(j)$	$f(j)$	$v(j)$	$p(j)$		$0_{0} 1^{2}{ }^{3} 3$	6	
1	1	3	2	0		-		
2	2	6	4	0		-	-	
3	5	7	4	1			\bigcirc	
4	4	10	7	1				
5	8	11	2	3				2
6	9	12	1	3				

M :	0	2	4	6	9	9	9	
eep		T	T	T	T	F		

Selected intervals: $\{1,4\}$.

Our example

j	$s(j)$	$f(j)$	$v(j)$	$p(j)$
1	1	3	2	0
2	2	6	4	0
3	5	7	4	1
4	4	10	7	1
5	8	11	2	3
6	9	12	1	3

M :	0	2	4	6	9	9	9
keep:		T	T	T	T	F	F

Selected intervals: $\{1,4\}$.
The array M contains the solutions of the subproblems. We will refer to this as the memoization table

Principles of Dynamic Programming

Principles of Dynamic Programming

Dynamic programming can be applied when there is a set of subproblems derived from the original subproblem such that:

Principles of Dynamic Programming

Dynamic programming can be applied when there is a set of subproblems derived from the original subproblem such that:

- There are only a polynomial number of subproblems

Principles of Dynamic Programming

Dynamic programming can be applied when there is a set of subproblems derived from the original subproblem such that:

- There are only a polynomial number of subproblems
- The solution to the original problem can be easily computed from the solution to the subproblems.

Principles of Dynamic Programming

Dynamic programming can be applied when there is a set of subproblems derived from the original subproblem such that:

- There are only a polynomial number of subproblems
- The solution to the original problem can be easily computed from the solution to the subproblems.
- For example, when the original problem is one of the subproblems

Principles of Dynamic Programming

Dynamic programming can be applied when there is a set of subproblems derived from the original subproblem such that:

- There are only a polynomial number of subproblems
- The solution to the original problem can be easily computed from the solution to the subproblems.
- For example, when the original problem is one of the subproblems
- There is
- An ordering on the subproblems, together with

Principles of Dynamic Programming

Dynamic programming can be applied when there is a set of subproblems derived from the original subproblem such that:

- There are only a polynomial number of subproblems
- The solution to the original problem can be easily computed from the solution to the subproblems.
- For example, when the original problem is one of the subproblems
- There is
- An ordering on the subproblems, together with
- A recurrence on subproblem solution that enable the solution to any subproblem P to be computed from the solutions to some of the subproblems that precede P in the ordering

Principles of Dynamic Programming

Dynamic programming can be applied when there is a set of subproblems derived from the original subproblem such that:

- There are only a polynomial number of subproblems
- The solution to the original problem can be easily computed from the solution to the subproblems.
- For example, when the original problem is one of the subproblems
- There is
- An ordering on the subproblems, together with
- A recurrence on subproblem solution that enable the solution to any subproblem P to be computed from the solutions to some of the subproblems that precede P in the ordering
We saw this in the case of the weighted interval scheduling problem.

Specifying a Dynamic Programming Solution

Specifying a Dynamic Programming Solution

The solution to a Dynamic Programming Solution is specified by writing:

Specifying a Dynamic Programming Solution

The solution to a Dynamic Programming Solution is specified by writing:

1. The subproblem domain: the set of indices of the subproblems.

Specifying a Dynamic Programming Solution

The solution to a Dynamic Programming Solution is specified by writing:

1. The subproblem domain: the set of indices of the subproblems.
2. A precise definition of of what the function mapping each subproblem to its solution represents. (Equivalently, a precise definition of what each entry in the memoization table represents.)

Specifying a Dynamic Programming Solution

The solution to a Dynamic Programming Solution is specified by writing:

1. The subproblem domain: the set of indices of the subproblems.
2. A precise definition of of what the function mapping each subproblem to its solution represents. (Equivalently, a precise definition of what each entry in the memoization table represents.)
3. The goal: the solution to the original problem, expressed in terms of certain values of the function from item \#2.

Specifying a Dynamic Programming Solution

The solution to a Dynamic Programming Solution is specified by writing:

1. The subproblem domain: the set of indices of the subproblems.
2. A precise definition of of what the function mapping each subproblem to its solution represents. (Equivalently, a precise definition of what each entry in the memoization table represents.)
3. The goal: the solution to the original problem, expressed in terms of certain values of the function from item \#2.
4. The initial value(s) / condition(s): values of the function from item \#2 for small subproblems that do not need to be decomposed further.

Specifying a Dynamic Programming Solution

The solution to a Dynamic Programming Solution is specified by writing:

1. The subproblem domain: the set of indices of the subproblems.
2. A precise definition of of what the function mapping each subproblem to its solution represents. (Equivalently, a precise definition of what each entry in the memoization table represents.)
3. The goal: the solution to the original problem, expressed in terms of certain values of the function from item \#2.
4. The initial value(s) / condition(s): values of the function from item \#2 for small subproblems that do not need to be decomposed further.
5. The recurrence: a formula describing how to compute the solution of a subproblem from the solutions to smaller subproblems.

Specifying a Dynamic Programming Solution

The solution to a Dynamic Programming Solution is specified by writing:

1. The subproblem domain: the set of indices of the subproblems.
2. A precise definition of of what the function mapping each subproblem to its solution represents. (Equivalently, a precise definition of what each entry in the memoization table represents.)
3. The goal: the solution to the original problem, expressed in terms of certain values of the function from item \#2.
4. The initial value(s) / condition(s): values of the function from item \#2 for small subproblems that do not need to be decomposed further.
5. The recurrence: a formula describing how to compute the solution of a subproblem from the solutions to smaller subproblems.
Here, "smaller" means "earlier in the ordering"

Solution to Weighted-Interval Scheduling

Solution to Weighted-Interval Scheduling

1. Subproblem domain: $\{0, \ldots, n\}$

Solution to Weighted-Interval Scheduling

1. Subproblem domain: $\{0, \ldots, n\}$
2. Function / Memoization table definition: $M(j)$ is the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, \ldots, j\}$

Solution to Weighted-Interval Scheduling

1. Subproblem domain: $\{0, \ldots, n\}$
2. Function / Memoization table definition: $M(j)$ is the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, \ldots, j\}$
3. Goal: $M(n)$

Solution to Weighted-Interval Scheduling

1. Subproblem domain: $\{0, \ldots, n\}$
2. Function / Memoization table definition: $M(j)$ is the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, \ldots, j\}$
3. Goal: $M(n)$
4. Initial value: $M(0)=0$

Solution to Weighted-Interval Scheduling

1. Subproblem domain: $\{0, \ldots, n\}$
2. Function / Memoization table definition: $M(j)$ is the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, \ldots, j\}$
3. Goal: $M(n)$
4. Initial value: $M(0)=0$
5. Recurrence: $M(j)=\max (v(j)+M(p(j)), M(j-1))$ for $j \geq 1$.

Solution to Weighted-Interval Scheduling

1. Subproblem domain: $\{0, \ldots, n\}$
2. Function / Memoization table definition: $M(j)$ is the maximum value that can be obtained from a set of non-overlapping intervals with indices in the range $\{1, \ldots, j\}$
3. Goal: $M(n)$
4. Initial value: $M(0)=0$
5. Recurrence: $M(j)=\max (v(j)+M(p(j)), M(j-1))$ for $j \geq 1$. Here, $p(j)$ is a precomputed function defined by

$$
p(j)=\left\{\begin{array}{l}
\text { The highest-numbered interval } i<j \text { that does not } \\
\text { overlap interval } j \text { if such an interval exists } \\
0 \text { otherwise }
\end{array}\right.
$$

Truck loading problem

Truck loading problem

(Note: This problem is usually called the subset-sum problem, but sometimes that name is used for a different problem. Here we call it the truck-loading problem.)

Truck loading problem

(Note: This problem is usually called the subset-sum problem, but sometimes that name is used for a different problem. Here we call it the truck-loading problem.)

Problem definition:

Truck loading problem

(Note: This problem is usually called the subset-sum problem, but sometimes that name is used for a different problem. Here we call it the truck-loading problem.)

Problem definition:

- Truck has weight limit of W.

Truck loading problem

(Note: This problem is usually called the subset-sum problem, but sometimes that name is used for a different problem. Here we call it the truck-loading problem.)

Problem definition:

- Truck has weight limit of W.
- n boxes. Box i has weight w_{i}.

Truck loading problem

(Note: This problem is usually called the subset-sum problem, but sometimes that name is used for a different problem. Here we call it the truck-loading problem.)
Problem definition:

- Truck has weight limit of W.
- n boxes. Box i has weight w_{i}.
- We want to load the truck to carry the maximum weight possible, subject to the weight restriction.

Truck loading problem

(Note: This problem is usually called the subset-sum problem, but sometimes that name is used for a different problem. Here we call it the truck-loading problem.)
Problem definition:

- Truck has weight limit of W.
- n boxes. Box i has weight w_{i}.
- We want to load the truck to carry the maximum weight possible, subject to the weight restriction.

Greedy heuristics don't work

Greedy heuristics don't work

1. Heaviest boxes first:

Greedy heuristics don't work

1. Heaviest boxes first:

$$
W=100, w_{1}=51, w_{2}=50, w_{3}=50
$$

Greedy heuristics don't work

1. Heaviest boxes first:

$$
W=100, w_{1}=51, w_{2}=50, w_{3}=50
$$

2. Lightest boxes first:

Greedy heuristics don't work

1. Heaviest boxes first:

$$
W=100, w_{1}=51, w_{2}=50, w_{3}=50
$$

2. Lightest boxes first:

$$
W=100, w_{1}=1, w_{2}=50, w_{3}=50
$$

Dynamic Programming Solution: Basic Idea

Dynamic Programming Solution: Basic Idea

Suppose we have i boxes and a truck with weight capacity j.

Dynamic Programming Solution: Basic Idea

Suppose we have i boxes and a truck with weight capacity j.

- Either the optimum solution contains the last box or it doesn't.

Dynamic Programming Solution: Basic Idea

Suppose we have i boxes and a truck with weight capacity j.

- Either the optimum solution contains the last box or it doesn't.
- If the optimum solution contains the last box:

Dynamic Programming Solution: Basic Idea

Suppose we have i boxes and a truck with weight capacity j.

- Either the optimum solution contains the last box or it doesn't.
- If the optimum solution contains the last box:
- The optimum value is w_{i} plus the optimum value we can get by fitting the first $i-1$ boxes on the truck, after accounting for the weight taken up by box i.

Dynamic Programming Solution: Basic Idea

Suppose we have i boxes and a truck with weight capacity j.

- Either the optimum solution contains the last box or it doesn't.
- If the optimum solution contains the last box:
- The optimum value is w_{i} plus the optimum value we can get by fitting the first $i-1$ boxes on the truck, after accounting for the weight taken up by box i.
- If the optimum solution does not contains the last box:

Dynamic Programming Solution: Basic Idea

Suppose we have i boxes and a truck with weight capacity j.

- Either the optimum solution contains the last box or it doesn't.
- If the optimum solution contains the last box:
- The optimum value is w_{i} plus the optimum value we can get by fitting the first $i-1$ boxes on the truck, after accounting for the weight taken up by box i.
- If the optimum solution does not contains the last box:
- The optimum value is the optimum value we can get from the first $i-1$ boxes.

Dynamic Programming Solution: Basic Idea

Suppose we have i boxes and a truck with weight capacity j.

- Either the optimum solution contains the last box or it doesn't.
- If the optimum solution contains the last box:
- The optimum value is w_{i} plus the optimum value we can get by fitting the first $i-1$ boxes on the truck, after accounting for the weight taken up by box i.
- If the optimum solution does not contains the last box:
- The optimum value is the optimum value we can get from the first $i-1$ boxes.

We will express this more formally on the next slide.

Solution: Expressed as recurrence equation

Solution: Expressed as recurrence equation

- Let $\operatorname{OPT}(i, j)$ be the maximum weight we can get by loading from boxes 1 through i, up to the weight limit j.

Solution: Expressed as recurrence equation

- Let $\operatorname{OPT}(i, j)$ be the maximum weight we can get by loading from boxes 1 through i, up to the weight limit j.
- Applying what we said on the previous slide:

Solution: Expressed as recurrence equation

- Let $\operatorname{OPT}(i, j)$ be the maximum weight we can get by loading from boxes 1 through i, up to the weight limit j.
- Applying what we said on the previous slide:

$$
\operatorname{OPT}(i, j)=\max \left(w_{i}+\mathrm{OPT}\left(i-1, j-w_{i}\right), \mathrm{OPT}(i-1, j)\right)
$$

Solution: Expressed as recurrence equation

- Let $\operatorname{OPT}(i, j)$ be the maximum weight we can get by loading from boxes 1 through i, up to the weight limit j.
- Applying what we said on the previous slide:

$$
\operatorname{OPT}(i, j)=\max \left(w_{i}+\mathrm{OPT}\left(i-1, j-w_{i}\right), \mathrm{OPT}(i-1, j)\right)
$$

- Note that if $w_{i}>j$, we can't use box i, so only the second choice is available.

Solution: Expressed as recurrence equation

- Let $\operatorname{OPT}(i, j)$ be the maximum weight we can get by loading from boxes 1 through i, up to the weight limit j.
- Applying what we said on the previous slide:

$$
\operatorname{OPT}(i, j)=\max \left(w_{i}+\operatorname{OPT}\left(i-1, j-w_{i}\right), \operatorname{OPT}(i-1, j)\right)
$$

- Note that if $w_{i}>j$, we can't use box i, so only the second choice is available.
- This recurrence equation gives us the dynamic programming solution (specified on next slide)

Specifying the Solution

Specifying the Solution

1. Subproblem domain: $\{0, \ldots, n\} \times\{0, \ldots, W\}$

Specifying the Solution

1. Subproblem domain: $\{0, \ldots, n\} \times\{0, \ldots, W\}$
2. Function / Memoization table definition: $\operatorname{OPT}(i, j)$ is the value of the best way of loading a subset of the first i boxes into a truck with maximum capacity j.

Specifying the Solution

1. Subproblem domain: $\{0, \ldots, n\} \times\{0, \ldots, W\}$
2. Function / Memoization table definition: $\operatorname{OPT}(i, j)$ is the value of the best way of loading a subset of the first i boxes into a truck with maximum capacity j.
3. Goal: $\operatorname{OPT}(n, W)$

Specifying the Solution

1. Subproblem domain: $\{0, \ldots, n\} \times\{0, \ldots, W\}$
2. Function / Memoization table definition: $\operatorname{OPT}(i, j)$ is the value of the best way of loading a subset of the first i boxes into a truck with maximum capacity j.
3. Goal: $\operatorname{OPT}(n, W)$
4. Initial values:

$$
\begin{aligned}
& \operatorname{OPT}(i, 0)=0 \quad \text { for all } i \geq 0 \\
& \operatorname{OPT}(0, j)=0 \text { for all } j \geq 0
\end{aligned}
$$

Specifying the Solution

1. Subproblem domain: $\{0, \ldots, n\} \times\{0, \ldots, W\}$
2. Function / Memoization table definition: $\operatorname{OPT}(i, j)$ is the value of the best way of loading a subset of the first i boxes into a truck with maximum capacity j.
3. Goal: $\operatorname{OPT}(n, W)$
4. Initial values:

$$
\begin{aligned}
& \operatorname{OPT}(i, 0)=0 \quad \text { for all } i \geq 0 \\
& \operatorname{OPT}(0, j)=0 \text { for all } j \geq 0
\end{aligned}
$$

5. Recurrence:

$$
\operatorname{OPT}(i, j)= \begin{cases}\max \left(w_{i}+\operatorname{OPT}\left(i-1, j-w_{i}\right), \operatorname{OPT}(i-1, j)\right) & \text { if } w_{i} \leq j \\ \operatorname{OPT}(i-1, j) & \text { if } w_{i}>j\end{cases}
$$

Truck Loading Problem DP Pseudocode: compute OPT Matrix

Truck Loading Problem DP Pseudocode: compute OPT Matrix

```
def compute_opt_matrix(w):
    for i = 0 to n: OPT[i,0] = 0
    for j = O to W: OPT[0,j] = 0
    for i = 1 to n:
        for j = 1 to W:
            if w[i] > j:
            OPT[i,j] = OPT[i-1,j]
            else:
                OPT[i,j] = max(w[i] + OPT[i-1,j-w[i]], OPT[i-1,j])
    return OPT
```


Truck Loading Problem DP Pseudocode: compute OPT Matrix

```
def compute_opt_matrix(w):
    for i = 0 to n: OPT[i,0] = 0
    for j = 0 to W: OPT [0,j] = 0
    for i = 1 to n:
        for j = 1 to W:
            if w[i] > j:
            OPT[i,j] = OPT[i-1,j]
            else:
                OPT[i,j] = max(w[i] + OPT[i-1,j-w[i]], OPT[i-1,j])
    return OPT
```

This tells us the maximum possible weight, but we need to also compute which boxes to load to achieve this maximum weight...

Truck Loading Problem DP Pseudocode: compute choice of boxes

Truck Loading Problem DP Pseudocode: compute choice

 of boxesIntroduce an new array keep $[i, j]$, which tells us whether we keep box i when we solve the subproblem with i boxes and capacity j.

Truck Loading Problem DP Pseudocode: compute choice of boxes

Introduce an new array keep $[i, j]$, which tells us whether we keep box i when we solve the subproblem with i boxes and capacity j.

```
def compute_opt_strategy(w):
    for i = 0 to n: OPT[i,0] = 0
    for j = O to W: OPT[0,j] = 0
    for i = 1 to n:
        for j = 1 to W:
            if (w[i] > j) or (w[i] + OPT[i-1,j-w[i]] <= OPT[i-1,j])
                OPT[i,j] = OPT[i-1,j]
                keep[i,j] = False
            else:
            OPT[i,j] = w[i] + OPT[i-1,j-w[i]]
            keep[i,j] = True
            return (OPT,keep)
```


Truck Loading Problem DP Pseudocode: compute choice of boxes

Introduce an new array keep $[i, j]$, which tells us whether we keep box i when we solve the subproblem with i boxes and capacity j.

```
def compute_opt_strategy(w):
    for i = 0 to n: OPT[i,0] = 0
    for j = 0 to W: OPT [0,j] = 0
    for i = 1 to n:
        for j = 1 to W:
            if (w[i] > j) or (w[i] + OPT[i-1,j-w[i]] <= OPT[i-1,j])
                OPT[i,j] = OPT[i-1,j]
                keep[i,j] = False
            else:
            OPT[i,j] = w[i] + OPT[i-1,j-w[i]]
            keep[i,j] = True
        return (OPT,keep)
```

Running time: $O(n \cdot W)$

Truck Loading Problem DP Pseudocode: compute choice of boxes [continued]

Truck Loading Problem DP Pseudocode: compute choice of boxes [continued]

```
def print_solution(OPT,keep,i,j):
    if i == 0: return
    if keep[i,j]:
        print_solution(OPT,keep,i-1,j-w[i])
        print (i)
    else:
        print_solution(OPT,keep,i-1,j)
    // Main program starts here
    (OPT,keep) = compute_opt_strategy(w)
print_solution(OPT,keep,n,W)
```


Truck Loading Problem Example

Truck Loading Problem Example

3 boxes with weights 9,4 , and 7 . Truck capacity $=12$.

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:
Maximum weight $=11$

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:
Maximum weight $=11$
Keep box 3.

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:
Maximum weight $=11$
Keep box $3 . \Rightarrow i=2, j=12-7=5$

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:
Maximum weight $=11$
Keep box 3. $\Rightarrow i=2, j=12-7=5$
Keep box 2.

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:
Maximum weight $=11$
Keep box 3. $\Rightarrow i=2, j=12-7=5$
Keep box 2. $\Rightarrow i=1, j=5-4=1$

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:
Maximum weight $=11$
Keep box 3. $\Rightarrow i=2, j=12-7=5$
Keep box 2. $\Rightarrow i=1, j=5-4=1$
Do not keep box 1 .

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:
Maximum weight $=11$
Keep box 3. $\Rightarrow i=2, j=12-7=5$
Keep box 2. $\Rightarrow i=1, j=5-4=1$
Do not keep box $1 . \Rightarrow i=0, j=1$

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:
Maximum weight $=11$
Keep box 3. $\Rightarrow i=2, j=12-7=5$
Keep box 2. $\Rightarrow i=1, j=5-4=1$
Do not keep box 1. $\Rightarrow i=0, j=1 \Rightarrow$ Done

Truck Loading Problem Example

3 boxes with weights 9, 4, and 7 . Truck capacity $=12$.

Solution:
Maximum weight $=11$
Keep box 3. $\Rightarrow i=2, j=12-7=5$
Keep box 2. $\Rightarrow i=1, j=5-4=1$
Do not keep box 1. $\Rightarrow i=0, j=1 \Rightarrow$ Done
Boxes 2 and 3

0/1 Knapsack Problem

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.
- Knapsack can handle a total weight of at most W.

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.
- Knapsack can handle a total weight of at most W.
- We want to put in items with maximum total value, subject to the weight restriction.

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.
- Knapsack can handle a total weight of at most W.
- We want to put in items with maximum total value, subject to the weight restriction.
- We can put all of an item in the knapsack, or none of it (fractional items have no value.)

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.
- Knapsack can handle a total weight of at most W.
- We want to put in items with maximum total value, subject to the weight restriction.
- We can put all of an item in the knapsack, or none of it (fractional items have no value.)
- Recall: If fractional items can be taken, greedy heuristic works:

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.
- Knapsack can handle a total weight of at most W.
- We want to put in items with maximum total value, subject to the weight restriction.
- We can put all of an item in the knapsack, or none of it (fractional items have no value.)
- Recall: If fractional items can be taken, greedy heuristic works:
- Order items according to value per unit weight.

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.
- Knapsack can handle a total weight of at most W.
- We want to put in items with maximum total value, subject to the weight restriction.
- We can put all of an item in the knapsack, or none of it (fractional items have no value.)
- Recall: If fractional items can be taken, greedy heuristic works:
- Order items according to value per unit weight.
- This does not work if we can only take whole items.

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.
- Knapsack can handle a total weight of at most W.
- We want to put in items with maximum total value, subject to the weight restriction.
- We can put all of an item in the knapsack, or none of it (fractional items have no value.)
- Recall: If fractional items can be taken, greedy heuristic works:
- Order items according to value per unit weight.
- This does not work if we can only take whole items.
- Example:

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.
- Knapsack can handle a total weight of at most W.
- We want to put in items with maximum total value, subject to the weight restriction.
- We can put all of an item in the knapsack, or none of it (fractional items have no value.)
- Recall: If fractional items can be taken, greedy heuristic works:
- Order items according to value per unit weight.
- This does not work if we can only take whole items.
- Example:
- $W=100$

0/1 Knapsack Problem

- We have a knapsack with limited capacity. We need to decide which items to put in the knapsack.
- There are n items: item i has weight w_{i}, value v_{i}.
- Knapsack can handle a total weight of at most W.
- We want to put in items with maximum total value, subject to the weight restriction.
- We can put all of an item in the knapsack, or none of it (fractional items have no value.)
- Recall: If fractional items can be taken, greedy heuristic works:
- Order items according to value per unit weight.
- This does not work if we can only take whole items.
- Example:
- $W=100$
- Item 1: $w_{1}=20, v_{1}=80$
- Item 2: $w_{2}=90, v_{2}=90$.

Dynamic Programming Solution

Dynamic Programming Solution

- Very similar to truck loading problem.

Dynamic Programming Solution

- Very similar to truck loading problem.
- Let $\operatorname{OPT}(i, j)$ be the value of the best way to load the first i items, using a knapsack with maximum capacity j.

Dynamic Programming Solution

- Very similar to truck loading problem.
- Let $\operatorname{OPT}(i, j)$ be the value of the best way to load the first i items, using a knapsack with maximum capacity j.
- If we optimally load i items using maximum capacity j either we include item i or we don't.

Dynamic Programming Solution

- Very similar to truck loading problem.
- Let $\operatorname{OPT}(i, j)$ be the value of the best way to load the first i items, using a knapsack with maximum capacity j.
- If we optimally load i items using maximum capacity j either we include item i or we don't. So:

$$
\operatorname{OPT}(i, j)=\max \left(v_{i}+\operatorname{OPT}\left(i-1, j-w_{i}\right), \operatorname{OPT}(i-1, j)\right) ;
$$

Dynamic Programming Solution

- Very similar to truck loading problem.
- Let $\operatorname{OPT}(i, j)$ be the value of the best way to load the first i items, using a knapsack with maximum capacity j.
- If we optimally load i items using maximum capacity j either we include item i or we don't. So:

$$
\operatorname{OPT}(i, j)=\max \left(v_{i}+\operatorname{OPT}\left(i-1, j-w_{i}\right), \operatorname{OPT}(i-1, j)\right) ;
$$

- If $w_{i}>j$, we can't use item i, so only the second choice is available.

Dynamic Programming Solution

- Very similar to truck loading problem.
- Let $\operatorname{OPT}(i, j)$ be the value of the best way to load the first i items, using a knapsack with maximum capacity j.
- If we optimally load i items using maximum capacity j either we include item i or we don't. So:

$$
\operatorname{OPT}(i, j)=\max \left(v_{i}+\operatorname{OPT}\left(i-1, j-w_{i}\right), \operatorname{OPT}(i-1, j)\right) ;
$$

- If $w_{i}>j$, we can't use item i, so only the second choice is available.

Specifying the Solution

Specifying the Solution

1. Subproblem domain $\{0, \ldots, n\} \times\{0, \ldots, W\}$

Specifying the Solution

1. Subproblem domain $\{0, \ldots, n\} \times\{0, \ldots, W\}$
2. Function /Memoization table definition: $\operatorname{OPT}(i, j)$ is the value of the best way of loading a subset of the first i items into a knapsack with maximum capacity j.

Specifying the Solution

1. Subproblem domain $\{0, \ldots, n\} \times\{0, \ldots, W\}$
2. Function /Memoization table definition: $\operatorname{OPT}(i, j)$ is the value of the best way of loading a subset of the first i items into a knapsack with maximum capacity j.
3. Goal: $\operatorname{OPT}(n, W)$

Specifying the Solution

1. Subproblem domain $\{0, \ldots, n\} \times\{0, \ldots, W\}$
2. Function /Memoization table definition: $\operatorname{OPT}(i, j)$ is the value of the best way of loading a subset of the first i items into a knapsack with maximum capacity j.
3. Goal: $\operatorname{OPT}(n, W)$
4. Initial values:

$$
\begin{aligned}
& \operatorname{OPT}(i, 0)=0 \quad \text { for all } i \geq 0 \\
& \operatorname{OPT}(0, j)=0 \text { for all } j \geq 0
\end{aligned}
$$

Specifying the Solution

1. Subproblem domain $\{0, \ldots, n\} \times\{0, \ldots, W\}$
2. Function /Memoization table definition: $\operatorname{OPT}(i, j)$ is the value of the best way of loading a subset of the first i items into a knapsack with maximum capacity j.
3. Goal: $\operatorname{OPT}(n, W)$
4. Initial values:

$$
\begin{aligned}
& \operatorname{OPT}(i, 0)=0 \text { for all } i \geq 0 \\
& \operatorname{OPT}(0, j)=0 \text { for all } j \geq 0
\end{aligned}
$$

5. Recurrence:

$$
\operatorname{OPT}(i, j)= \begin{cases}\max \left(v_{i}+\operatorname{OPT}\left(i-1, j-w_{i}\right), \operatorname{OPT}(i-1, j)\right) & \text { if } w_{i} \leq j \\ \operatorname{OPT}(i-1, j) & \text { if } w_{i}>j\end{cases}
$$

Pseudocode for DP Solution to 0/1 Knapsack Problem

```
def compute_opt_strategy(w,v):
    for i = 0 to \(\mathrm{n}: ~ O P T[i, 0]=0\)
    for \(j=0\) to \(W: \operatorname{OPT}[0, j]=0\)
    for \(\mathrm{i}=1\) to n :
    for \(\mathrm{j}=1\) to W :
        if (w[i] > j) or (v[i] + OPT[i-1,j-w[i]] <= OPT[i-1,j])
        OPT[i,j] = OPT[i-1,j]
        keep[i,j] = False
        else:
        OPT[i,j] = v[i] + OPT[i-1,j-w[i]]
        keep[i,j] = True
        return (OPT,keep)
```


Pseudocode for DP Solution to 0/1 Knapsack Problem [continued]

```
def print_solution(OPT,keep,i,j):
    if i == 0: return
    if keep[i,j]:
        print_solution(OPT,keep,i-1,j-w[i])
        print (i)
    else:
        print_solution(OPT,keep,i-1,j)
    // Main program starts here
    (OPT,keep) = compute_opt_strategy(w,v)
print_solution(OPT,keep,n,W)
```


Optimal Matrix Chain Multiplication

Optimal Matrix Chain Multiplication
 Some facts about matrix multiplication:

Optimal Matrix Chain Multiplication

Some facts about matrix multiplication:

1. Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires $p \cdot q \cdot r$ multiplications. (Because the product will be $p \times r$, and the computation of each entry requires q scalar multiplications).

Optimal Matrix Chain Multiplication

Some facts about matrix multiplication:

1. Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires $p \cdot q \cdot r$ multiplications. (Because the product will be $p \times r$, and the computation of each entry requires q scalar multiplications).
2. Matrix multiplication is associative:

$$
(A \times B) \times C=A \times(B \times C)
$$

Optimal Matrix Chain Multiplication

Some facts about matrix multiplication:

1. Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires $p \cdot q \cdot r$ multiplications. (Because the product will be $p \times r$, and the computation of each entry requires q scalar multiplications).
2. Matrix multiplication is associative:

$$
(A \times B) \times C=A \times(B \times C)
$$

3. The parenthesizing may effect the efficiency.

Optimal Matrix Chain Multiplication

Some facts about matrix multiplication:

1. Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires $p \cdot q \cdot r$ multiplications. (Because the product will be $p \times r$, and the computation of each entry requires q scalar multiplications).
2. Matrix multiplication is associative:

$$
(A \times B) \times C=A \times(B \times C)
$$

3. The parenthesizing may effect the efficiency.

$$
\begin{array}{ll}
A: & p \times q \\
B: & q \times r \\
C: & r \times s
\end{array}
$$

Optimal Matrix Chain Multiplication

Some facts about matrix multiplication:

1. Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires $p \cdot q \cdot r$ multiplications. (Because the product will be $p \times r$, and the computation of each entry requires q scalar multiplications).
2. Matrix multiplication is associative:

$$
(A \times B) \times C=A \times(B \times C)
$$

3. The parenthesizing may effect the efficiency.

$$
\begin{array}{llll}
A: & p \times q & A \times B: & p \times r \\
B: & q \times r & B \times C: & q \times s
\end{array}
$$

$$
C: \quad r \times s
$$

Optimal Matrix Chain Multiplication

Some facts about matrix multiplication:

1. Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires $p \cdot q \cdot r$ multiplications. (Because the product will be $p \times r$, and the computation of each entry requires q scalar multiplications).
2. Matrix multiplication is associative:

$$
(A \times B) \times C=A \times(B \times C)
$$

3. The parenthesizing may effect the efficiency.

$$
\begin{array}{llll}
A: & p \times q & A \times B: & p \times r \\
B: & q \times r & B \times C: & q \times s
\end{array}
$$

$$
C: \quad r \times s
$$

$(A \times B) \times C$: Number of scalar multiplications is:

$$
p \cdot q \cdot r+p \cdot r \cdot s
$$

Optimal Matrix Chain Multiplication

Some facts about matrix multiplication:

1. Multiplying a $p \times q$ matrix by a $q \times r$ matrix requires $p \cdot q \cdot r$ multiplications. (Because the product will be $p \times r$, and the computation of each entry requires q scalar multiplications).
2. Matrix multiplication is associative:

$$
(A \times B) \times C=A \times(B \times C)
$$

3. The parenthesizing may effect the efficiency.

$$
\begin{array}{llll}
A: & p \times q & A \times B: & p \times r \\
B: & q \times r & B \times C: & q \times s
\end{array}
$$

$$
C: \quad r \times s
$$

$(A \times B) \times C$: Number of scalar multiplications is:

$$
p \cdot q \cdot r+p \cdot r \cdot s
$$

$A \times(B \times C)$: Number of scalar multiplications is:

$$
q \cdot r \cdot s+p \cdot q \cdot s
$$

Example

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$:

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50
$$

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50=8,000+200,000
$$

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50=8,000+200,000=208,000
$$

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50=8,000+200,000=208,000
$$

- $A \times(B \times C)$:

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50=8,000+200,000=208,000
$$

- $A \times(B \times C)$: Cost is

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50=8,000+200,000=208,000
$$

- $A \times(B \times C):$ Cost is

$$
2 \cdot 100 \cdot 50+40 \cdot 2 \cdot 50
$$

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50=8,000+200,000=208,000
$$

- $A \times(B \times C):$ Cost is

$$
2 \cdot 100 \cdot 50+40 \cdot 2 \cdot 50=10,000+4,000
$$

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50=8,000+200,000=208,000
$$

- $A \times(B \times C):$ Cost is

$$
2 \cdot 100 \cdot 50+40 \cdot 2 \cdot 50=10,000+4,000=14,000
$$

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50=8,000+200,000=208,000
$$

- $A \times(B \times C)$: Cost is

$$
2 \cdot 100 \cdot 50+40 \cdot 2 \cdot 50=10,000+4,000=14,000
$$

$A \times(B \times C)$ is considerably more efficient

Example

Suppose A is $40 \times 2, B$ is 2×100, and C is 100×50.

- $(A \times B) \times C$: Cost is

$$
40 \cdot 2 \cdot 100+40 \cdot 100 \cdot 50=8,000+200,000=208,000
$$

- $A \times(B \times C)$: Cost is

$$
2 \cdot 100 \cdot 50+40 \cdot 2 \cdot 50=10,000+4,000=14,000
$$

$A \times(B \times C)$ is considerably more efficient
Parenthesization Matters

Optimal Matrix Chain Multiplication problem

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.
- Matrix A_{i} is $d_{i-1} \times d_{i}$.

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.
- Matrix A_{i} is $d_{i-1} \times d_{i}$.
- What is the most efficient way of grouping (i.e.,parenthesizing) to compute $A_{1} \times \cdots \times A_{n}$?

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.
- Matrix A_{i} is $d_{i-1} \times d_{i}$.
- What is the most efficient way of grouping (i.e.,parenthesizing) to compute $A_{1} \times \cdots \times A_{n}$?
- Most efficient means fewest scalar multiplications

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.
- Matrix A_{i} is $d_{i-1} \times d_{i}$.
- What is the most efficient way of grouping (i.e.,parenthesizing) to compute $A_{1} \times \cdots \times A_{n}$?
- Most efficient means fewest scalar multiplications

Example:

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.
- Matrix A_{i} is $d_{i-1} \times d_{i}$.
- What is the most efficient way of grouping (i.e.,parenthesizing) to compute $A_{1} \times \cdots \times A_{n}$?
- Most efficient means fewest scalar multiplications

Example: | $A_{1}: 10 \times 15$ |
| :--- |
| $A_{2}: 15 \times 5$ |
| $A_{3}: 5 \times 60$ |
| $A_{4}: 60 \times 100$ |
| $A_{5}: 100 \times 20$ |
| $A_{6}: 20 \times 40$ |
| $A_{7}: 40 \times 47$ |

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.
- Matrix A_{i} is $d_{i-1} \times d_{i}$.
- What is the most efficient way of grouping (i.e.,parenthesizing) to compute $A_{1} \times \cdots \times A_{n}$?
- Most efficient means fewest scalar multiplications

Example: | $A_{1}: 10 \times 15$ |
| :--- |
| $A_{2}: 15 \times 5$ |
| $A_{3}: 5 \times 60$ |
| $A_{4}: 60 \times 100$ |
| $A_{5}: 100 \times 20$ |
| $A_{6}: 20 \times 40$ |
| $A_{7}: 40 \times 47$ |

$$
\begin{array}{ll}
d_{0} & =10 \\
d_{1} & =15 \\
d_{2} & =5 \\
d_{3} & =60 \\
d_{4} & =100 \\
d_{5} & =20 \\
d_{6} & =40 \\
d_{7} & =47
\end{array}
$$

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.
- Matrix A_{i} is $d_{i-1} \times d_{i}$.
- What is the most efficient way of grouping (i.e.,parenthesizing) to compute $A_{1} \times \cdots \times A_{n}$?
- Most efficient means fewest scalar multiplications

Example: | $A_{1}: 10 \times 15$ |
| :--- |
| $A_{2}: 15 \times 5$ |
| $A_{3}: 5 \times 60$ |
| $A_{4}: 60 \times 100$ |
| $A_{5}: 100 \times 20$ |
| $A_{6}: 20 \times 40$ |
| $A_{7}: 40 \times 47$ |

$$
\begin{array}{ll}
d_{0} & =10 \\
d_{1} & =15 \\
d_{2} & =5 \\
d_{3} & =60 \\
d_{4} & =100 \\
d_{5} & =20 \\
d_{6} & =40 \\
d_{7} & =47
\end{array}
$$

- As we will see, the optimal cost is 56,500 scalar multiplications

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.
- Matrix A_{i} is $d_{i-1} \times d_{i}$.
- What is the most efficient way of grouping (i.e.,parenthesizing) to compute $A_{1} \times \cdots \times A_{n}$?
- Most efficient means fewest scalar multiplications

Example: | $A_{1}: 10 \times 15$ |
| :--- |
| $A_{2}: 15 \times 5$ |
| $A_{3}: 5 \times 60$ |
| $A_{4}: 60 \times 100$ |
| $A_{5}: 100 \times 20$ |
| $A_{6}: 20 \times 40$ |
| $A_{7}: 40 \times 47$ |

$$
\begin{array}{ll}
d_{0} & =10 \\
d_{1} & =15 \\
d_{2} & =5 \\
d_{3} & =60 \\
d_{4} & =100 \\
d_{5} & =20 \\
d_{6} & =40 \\
d_{7} & =47
\end{array}
$$

- As we will see, the optimal cost is 56,500 scalar multiplications
- The optimal grouping is:

Optimal Matrix Chain Multiplication problem

- Given n matrices: A_{1}, \ldots, A_{n}.
- Matrix A_{i} is $d_{i-1} \times d_{i}$.
- What is the most efficient way of grouping (i.e.,parenthesizing) to compute $A_{1} \times \cdots \times A_{n}$?
- Most efficient means fewest scalar multiplications

Example: | $A_{1}: 10 \times 15$ |
| :--- |
| $A_{2}: 15 \times 5$ |
| $A_{3}: 5 \times 60$ |
| $A_{4}: 60 \times 100$ |
| $A_{5}: 100 \times 20$ |
| $A_{6}: 20 \times 40$ |
| $A_{7}: 40 \times 47$ |

$$
\begin{array}{ll}
d_{0} & =10 \\
d_{1} & =15 \\
d_{2} & =5 \\
d_{3} & =60 \\
d_{4} & =100 \\
d_{5} & =20 \\
d_{6} & =40 \\
d_{7} & =47
\end{array}
$$

- As we will see, the optimal cost is 56,500 scalar multiplications
- The optimal grouping is:

$$
\left(A_{1} \times A_{2}\right) \times\left(\left(\left(\left(A_{3} \times A_{4}\right) \times A_{5}\right) \times A_{6}\right) \times A_{7}\right)
$$

Dynamic Programming Solution

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$
- The cost of computing the left subchain is $M(i, k)$

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$
- The cost of computing the left subchain is $M(i, k)$
- The cost of computing the right subchain is $M(k+1, j)$

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$
- The cost of computing the left subchain is $M(i, k)$
- The cost of computing the right subchain is $M(k+1, j)$
- Cost of final multiplication:

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$
- The cost of computing the left subchain is $M(i, k)$
- The cost of computing the right subchain is $M(k+1, j)$
- Cost of final multiplication:
- $\left(A_{i} \times \cdots \times A_{k}\right)$ is $d_{i-1} \times d_{k}$

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$
- The cost of computing the left subchain is $M(i, k)$
- The cost of computing the right subchain is $M(k+1, j)$
- Cost of final multiplication:
- $\left(A_{i} \times \cdots \times A_{k}\right)$ is $d_{i-1} \times d_{k}$
- $\left(A_{k+1} \times \cdots \times A_{j}\right)$ is $d_{k} \times d_{j}$

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$
- The cost of computing the left subchain is $M(i, k)$
- The cost of computing the right subchain is $M(k+1, j)$
- Cost of final multiplication:
- $\left(A_{i} \times \cdots \times A_{k}\right)$ is $d_{i-1} \times d_{k}$
- $\left(A_{k+1} \times \cdots \times A_{j}\right)$ is $d_{k} \times d_{j}$
- Cost of multiplication is $d_{i-1} d_{k} d_{j}$

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$
- The cost of computing the left subchain is $M(i, k)$
- The cost of computing the right subchain is $M(k+1, j)$
- Cost of final multiplication:
- $\left(A_{i} \times \cdots \times A_{k}\right)$ is $d_{i-1} \times d_{k}$
- $\left(A_{k+1} \times \cdots \times A_{j}\right)$ is $d_{k} \times d_{j}$
- Cost of multiplication is $d_{i-1} d_{k} d_{j}$
- Total cost is $M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}$.

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$
- The cost of computing the left subchain is $M(i, k)$
- The cost of computing the right subchain is $M(k+1, j)$
- Cost of final multiplication:
- $\left(A_{i} \times \cdots \times A_{k}\right)$ is $d_{i-1} \times d_{k}$
- $\left(A_{k+1} \times \cdots \times A_{j}\right)$ is $d_{k} \times d_{j}$
- Cost of multiplication is $d_{i-1} d_{k} d_{j}$
- Total cost is $M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}$.
- Choose the best index k :

Dynamic Programming Solution

- Subproblems: optimally multiplying chains $A_{i} \times \cdots \times A_{j}$
- Define $M(i, j)=$ the number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ using the best possible grouping
- The final multiplication will consist of a left subchain and a right subchain.
- Suppose the left subchain stops at $A_{k}:\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)$
- The cost of computing the left subchain is $M(i, k)$
- The cost of computing the right subchain is $M(k+1, j)$
- Cost of final multiplication:
- $\left(A_{i} \times \cdots \times A_{k}\right)$ is $d_{i-1} \times d_{k}$
- $\left(A_{k+1} \times \cdots \times A_{j}\right)$ is $d_{k} \times d_{j}$
- Cost of multiplication is $d_{i-1} d_{k} d_{j}$
- Total cost is $M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}$.
- Choose the best index k :

$$
M(i, j)=\min _{i \leq k \leq j-1}\left(M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right)
$$

Specifying the Solution

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).
3. Goal: $M(1, n)$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).
3. Goal: $M(1, n)$
4. Initial values: $M(i, i)=0$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).
3. Goal: $M(1, n)$
4. Initial values: $M(i, i)=0$
5. Recurrence:

$$
M(i, j)=\min _{i \leq k \leq j-1}\left(M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right)
$$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).
3. Goal: $M(1, n)$
4. Initial values: $M(i, i)=0$
5. Recurrence:

$$
M(i, j)=\min _{i \leq k \leq j-1}\left(M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right)
$$

Note:

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).
3. Goal: $M(1, n)$
4. Initial values: $M(i, i)=0$
5. Recurrence:

$$
M(i, j)=\min _{i \leq k \leq j-1}\left(M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right)
$$

Note:

- The fact that $M(i, i+1)=d_{i-1} d_{i} d_{i+1}$ does not need to be stated as an initial condition.

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).
3. Goal: $M(1, n)$
4. Initial values: $M(i, i)=0$
5. Recurrence:

$$
M(i, j)=\min _{i \leq k \leq j-1}\left(M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right)
$$

Note:

- The fact that $M(i, i+1)=d_{i-1} d_{i} d_{i+1}$ does not need to be stated as an initial condition.
- It follows from the recurrence equation that

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).
3. Goal: $M(1, n)$
4. Initial values: $M(i, i)=0$
5. Recurrence:

$$
M(i, j)=\min _{i \leq k \leq j-1}\left(M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right)
$$

Note:

- The fact that $M(i, i+1)=d_{i-1} d_{i} d_{i+1}$ does not need to be stated as an initial condition.
- It follows from the recurrence equation that

$$
M(i, i+1)=M(i, i)+M(i+1, i+1)+d_{i-1} d_{i} d_{i+1}
$$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).
3. Goal: $M(1, n)$
4. Initial values: $M(i, i)=0$
5. Recurrence:

$$
M(i, j)=\min _{i \leq k \leq j-1}\left(M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right)
$$

Note:

- The fact that $M(i, i+1)=d_{i-1} d_{i} d_{i+1}$ does not need to be stated as an initial condition.
- It follows from the recurrence equation that

$$
\begin{aligned}
M(i, i+1) & =M(i, i)+M(i+1, i+1)+d_{i-1} d_{i} d_{i+1} \\
& =0+0+d_{i-1} d_{i} d_{i+1}
\end{aligned}
$$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq j \leq n\}$
2. Function / Memoization table definition: $M(i, j)$ is the minimum number of multiplications required to compute the product $A_{i} \times \cdots \times A_{j}$ (using the best possible grouping).
3. Goal: $M(1, n)$
4. Initial values: $M(i, i)=0$
5. Recurrence:

$$
M(i, j)=\min _{i \leq k \leq j-1}\left(M(i, k)+M(k+1, j)+d_{i-1} d_{k} d_{j}\right)
$$

Note:

- The fact that $M(i, i+1)=d_{i-1} d_{i} d_{i+1}$ does not need to be stated as an initial condition.
- It follows from the recurrence equation that

$$
\begin{aligned}
M(i, i+1) & =M(i, i)+M(i+1, i+1)+d_{i-1} d_{i} d_{i+1} \\
& =0+0+d_{i-1} d_{i} d_{i+1} \\
& =d_{i-1} d_{i} d_{i+1} .
\end{aligned}
$$

Pseudocode

Pseudocode

- The input is just the array of dimensions: d_{0}, \ldots, d_{n}.

Pseudocode

- The input is just the array of dimensions: d_{0}, \ldots, d_{n}.
- We need to compute the chain costs in increasing order of the chain lengths. (The length of the chain $A_{i} \times \cdots \times A_{j}$ is $j-i+1$.)

Pseudocode

- The input is just the array of dimensions: d_{0}, \ldots, d_{n}.
- We need to compute the chain costs in increasing order of the chain lengths. (The length of the chain $A_{i} \times \cdots \times A_{j}$ is $j-i+1$.)

```
def optMatrixChain(d):
    for i = 1 to n:
    M[i,i] = 0
    for len = 2 to n:
    for i = 1 to n - len + 1:
        j = i + len - 1
        M[i,j] = +\infty
        for k = i to j-1:
        x = M[i,k] + M[k+1,j] + d[i-1]*d[k]*d[j]
        if x < M[i,j]:
        M[i,j] = x
    return M
```


Computing the chains

Computing the chains

- Augment the preceding pseudocode by storing the best split for each (i, j) in an array S.

Computing the chains

- Augment the preceding pseudocode by storing the best split for each (i, j) in an array S.
- $S[i, j]=k$ when the best split for $A_{i} \times \cdots \times A_{j}$ is

$$
\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)
$$

Computing the chains

- Augment the preceding pseudocode by storing the best split for each (i, j) in an array S.
- $S[i, j]=k$ when the best split for $A_{i} \times \cdots \times A_{j}$ is

$$
\left(A_{i} \times \cdots \times A_{k}\right) \times\left(A_{k+1} \times \cdots \times A_{j}\right)
$$

```
def optMatrixChain(d):
    for \(i=1\) to \(n\) :
        \(\mathrm{M}[\mathrm{i}, \mathrm{i}]=0\)
    for len \(=2\) to \(n\) :
        for \(\mathrm{i}=1\) to n - len + 1:
        \(j=i+l e n-1\)
        \(M[i, j]=+\infty\)
        for \(k=i\) to \(j-1\) :
        \(x=M[i, k]+M[k+1, j]+d[i-1] * d[k] * d[j]\)
        if \(x<M[i, j]:\)
        \(M[i, j]=x\)
        \(S[i, j]=k\)
    return M,S
```


Solution to our example

Solution to our example

$$
\begin{aligned}
& A_{1}: 10 \times 15 \\
& A_{2}: 15 \times 5 \\
& A_{3}: 5 \times 60 \\
& A_{4}: 60 \times 100 \\
& A_{5}: 100 \times 20 \\
& A_{6}: 20 \times 40 \\
& A_{7}: 40 \times 47
\end{aligned}
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

1	2	3	4	5	6	7	
0	750	3750	35750	41750	46750	56500	
-	1	2	2	2	2	2	1

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

1	2	3	4	5	6	7	1
-	$\begin{gathered} 750 \\ 1 \end{gathered}$	$\begin{gathered} 3750 \\ 2 \end{gathered}$	$\begin{gathered} 35750 \\ 2 \end{gathered}$	$\begin{gathered} 41750 \\ 2 \end{gathered}$	$\begin{gathered} 46750 \\ 2 \end{gathered}$	$\begin{gathered} 56500 \\ 2 \end{gathered}$	
	0	$\begin{gathered} 4500 \\ 2 \end{gathered}$	$\begin{gathered} 37500 \\ 2 \end{gathered}$	$\begin{gathered} 41500 \\ 2 \end{gathered}$	$\begin{gathered} 47000 \\ 2 \end{gathered}$	$\begin{gathered} 56925 \\ 2 \end{gathered}$	2
		0	$\begin{gathered} 30000 \\ 3 \end{gathered}$	$\begin{gathered} 40000 \\ 4 \end{gathered}$	$\begin{gathered} 44000 \\ 5 \end{gathered}$	$\begin{gathered} 53400 \\ 6 \end{gathered}$	3
			0	$\begin{gathered} 120000 \\ 4 \end{gathered}$	$\begin{gathered} 168000 \\ 5 \end{gathered}$	$\begin{gathered} 214000 \\ 5 \end{gathered}$	4
				0	$\begin{gathered} 80000 \\ 5 \end{gathered}$	$\begin{gathered} 131600 \\ 5 \end{gathered}$	5
					0	$\begin{gathered} 37600 \\ 6 \end{gathered}$	6
						0	7

Optimal value is 56500

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

Optimal value is 56500

Optimal grouping is:

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

Optimal value is 56500

Optimal grouping is:

$$
A_{1} \times A_{2} \times A_{3} \times A_{4} \times A_{5} \times A_{6} \times A_{7}
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

Optimal value is 56500

Optimal grouping is:

$$
A_{1} \times A_{2} \times A_{3} \times A_{4} \times A_{5} \times A_{6} \times A_{7}
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

Optimal value is 56500

Optimal grouping is:

$$
\left(A_{1} \times A_{2}\right) \times\left(A_{3} \times A_{4} \times A_{5} \times A_{6} \times A_{7}\right)
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

Optimal value is 56500

Optimal grouping is:

$$
\left(A_{1} \times A_{2}\right) \times\left(A_{3} \times A_{4} \times A_{5} \times A_{6} \times A_{7}\right)
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

Optimal value is 56500

Optimal grouping is:

$$
\left(A_{1} \times A_{2}\right) \times\left(\left(A_{3} \times A_{4} \times A_{5} \times A_{6}\right) \times A_{7}\right)
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

Optimal value is 56500

Optimal grouping is:

$$
\left(A_{1} \times A_{2}\right) \times\left(\left(A_{3} \times A_{4} \times A_{5} \times A_{6}\right) \times A_{7}\right)
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

1	2	3	4	5	6	7	1
0	$\begin{gathered} \hline 750 \\ 1 \end{gathered}$	$\begin{gathered} 3750 \\ 2 \end{gathered}$	$\begin{gathered} 35750 \\ 2 \end{gathered}$	$\begin{gathered} 41750 \\ 2 \end{gathered}$	$\begin{gathered} 46750 \\ 2 \end{gathered}$	$\begin{gathered} 56500 \\ 2 \end{gathered}$	
	0	$\begin{gathered} 4500 \\ 2 \end{gathered}$	$\begin{gathered} 37500 \\ 2 \end{gathered}$	$\begin{gathered} 41500 \\ 2 \end{gathered}$	$\begin{gathered} 47000 \\ 2 \end{gathered}$	$\begin{gathered} 56925 \\ 2 \end{gathered}$	2
		0	$\begin{gathered} 30000 \\ 3 \end{gathered}$	$\begin{gathered} 40000 \\ 4 \end{gathered}$	$\begin{gathered} 44000 \\ 5 \end{gathered}$	$\begin{gathered} 53400 \\ 6 \end{gathered}$	3
			0	$\begin{gathered} 120000 \\ 4 \end{gathered}$	$\begin{gathered} 168000 \\ 5 \end{gathered}$	$\begin{gathered} 214000 \\ 5 \end{gathered}$	4
				0	$\begin{gathered} 80000 \\ 5 \end{gathered}$	$\begin{gathered} 131600 \\ 5 \end{gathered}$	5
					0	$\begin{gathered} 37600 \\ 6 \end{gathered}$	6
						0	7

Optimal value is 56500

Optimal grouping is:

$$
\left(A_{1} \times A_{2}\right) \times\left(\left(\left(A_{3} \times A_{4} \times A_{5}\right) \times A_{6}\right) \times A_{7}\right)
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

1	2	3	4	5	6	7	1
0	$\begin{gathered} \hline 750 \\ 1 \end{gathered}$	$\begin{gathered} 3750 \\ 2 \end{gathered}$	$\begin{gathered} 35750 \\ 2 \end{gathered}$	$\begin{gathered} 41750 \\ 2 \end{gathered}$	$\begin{gathered} 46750 \\ 2 \end{gathered}$	$\begin{gathered} 56500 \\ 2 \end{gathered}$	
	0	$\begin{gathered} 4500 \\ 2 \end{gathered}$	$\begin{gathered} 37500 \\ 2 \end{gathered}$	$\begin{gathered} 41500 \\ 2 \end{gathered}$	$\begin{gathered} 47000 \\ 2 \end{gathered}$	$\begin{gathered} 56925 \\ 2 \end{gathered}$	2
		0	$\begin{gathered} 30000 \\ 3 \end{gathered}$	$\begin{gathered} 40000 \\ 4 \end{gathered}$	$\begin{gathered} 44000 \\ 5 \end{gathered}$	$\begin{gathered} 53400 \\ 6 \end{gathered}$	3
			0	$\begin{gathered} 120000 \\ 4 \end{gathered}$	$\begin{gathered} 168000 \\ 5 \end{gathered}$	$\begin{gathered} 214000 \\ 5 \end{gathered}$	4
				0	$\begin{gathered} 80000 \\ 5 \end{gathered}$	$\begin{gathered} 131600 \\ 5 \end{gathered}$	5
					0	$\begin{gathered} 37600 \\ 6 \end{gathered}$	6
						0	7

Optimal value is 56500

Optimal grouping is:

$$
\left(A_{1} \times A_{2}\right) \times\left(\left(\left(A_{3} \times A_{4} \times A_{5}\right) \times A_{6}\right) \times A_{7}\right)
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

1	2	3	4	5	6	7	1
-	$\begin{gathered} 750 \\ 1 \end{gathered}$	$\begin{gathered} 3750 \\ 2 \end{gathered}$	$\begin{gathered} 35750 \\ 2 \end{gathered}$	$\begin{gathered} 41750 \\ 2 \end{gathered}$	$\begin{gathered} 46750 \\ 2 \end{gathered}$	$\begin{gathered} 56500 \\ 2 \end{gathered}$	
	0	$\begin{gathered} 4500 \\ 2 \end{gathered}$	$\begin{gathered} 37500 \\ 2 \end{gathered}$	$\begin{gathered} 41500 \\ 2 \end{gathered}$	$\begin{gathered} 47000 \\ 2 \end{gathered}$	$\begin{gathered} 56925 \\ 2 \end{gathered}$	2
		0	$\begin{gathered} 30000 \\ 3 \end{gathered}$	$\begin{gathered} 40000 \\ 4 \end{gathered}$	$\begin{gathered} 44000 \\ 5 \end{gathered}$	$\begin{gathered} 53400 \\ 6 \end{gathered}$	3
			0	$\begin{gathered} 120000 \\ 4 \end{gathered}$	$\begin{gathered} 168000 \\ 5 \end{gathered}$	$\begin{gathered} 214000 \\ 5 \end{gathered}$	4
				0	$\begin{gathered} 80000 \\ 5 \end{gathered}$	$\begin{gathered} 131600 \\ 5 \end{gathered}$	5
					0	$\begin{gathered} 37600 \\ 6 \end{gathered}$	6
						0	7

Optimal value is 56500

Optimal grouping is:

$$
\left(A_{1} \times A_{2}\right) \times\left(\left(\left(\left(A_{3} \times A_{4}\right) \times A_{5}\right) \times A_{6}\right) \times A_{7}\right)
$$

Solution to our example

$A_{1}: 10 \times 15$
$A_{2}: 15 \times 5$
$A_{3}: 5 \times 60$
$A_{4}: 60 \times 100$
$A_{5}: 100 \times 20$
$A_{6}: 20 \times 40$
$A_{7}: 40 \times 47$
$d_{0}=10$
$d_{1}=15$
$d_{2}=5$
$d_{3}=60$
$d_{4}=100$
$d_{5}=20$
$d_{6}=40$
$d_{7}=47$

1	2	3	4	5	6	7	1
0	$\begin{gathered} \hline 750 \\ 1 \end{gathered}$	$\begin{gathered} 3750 \\ 2 \end{gathered}$	$\begin{gathered} 35750 \\ 2 \end{gathered}$	$\begin{gathered} 41750 \\ 2 \end{gathered}$	$\begin{gathered} 46750 \\ 2 \end{gathered}$	$\begin{gathered} 56500 \\ 2 \end{gathered}$	
	0	$\begin{gathered} 4500 \\ 2 \end{gathered}$	$\begin{gathered} 37500 \\ 2 \end{gathered}$	$\begin{gathered} 41500 \\ 2 \end{gathered}$	$\begin{gathered} 47000 \\ 2 \end{gathered}$	$\begin{gathered} 56925 \\ 2 \end{gathered}$	2
		0	$\begin{gathered} 30000 \\ 3 \end{gathered}$	$\begin{gathered} 40000 \\ 4 \end{gathered}$	$\begin{gathered} 44000 \\ 5 \end{gathered}$	$\begin{gathered} 53400 \\ 6 \end{gathered}$	3
			0	$\begin{gathered} 120000 \\ 4 \end{gathered}$	$\begin{gathered} 168000 \\ 5 \end{gathered}$	$\begin{gathered} 214000 \\ 5 \end{gathered}$	4
				0	$\begin{gathered} 80000 \\ 5 \end{gathered}$	$\begin{gathered} 131600 \\ 5 \end{gathered}$	5
					0	$\begin{gathered} 37600 \\ 6 \end{gathered}$	6
						0	7

Optimal value is 56500

Optimal grouping is:

$$
\left(A_{1} \times A_{2}\right) \times\left(\left(\left(\left(A_{3} \times A_{4}\right) \times A_{5}\right) \times A_{6}\right) \times A_{7}\right)
$$

Optimal Binary Search Trees

Optimal Binary Search Trees
 Given (as input):

Optimal Binary Search Trees

Given (as input):

- A set of values to be stored as keys in a binary search tree

Optimal Binary Search Trees

Given (as input):

- A set of values to be stored as keys in a binary search tree
- The frequency of access of each value.

Optimal Binary Search Trees

Given (as input):

- A set of values to be stored as keys in a binary search tree
- The frequency of access of each value.
- The frequencies might add up to 1 , in which case they are probabilities, but the algorithm works whether or not this is the case.

Optimal Binary Search Trees

Given (as input):

- A set of values to be stored as keys in a binary search tree
- The frequency of access of each value.
- The frequencies might add up to 1 , in which case they are probabilities, but the algorithm works whether or not this is the case.
Problem:

Optimal Binary Search Trees

Given (as input):

- A set of values to be stored as keys in a binary search tree
- The frequency of access of each value.
- The frequencies might add up to 1 , in which case they are probabilities, but the algorithm works whether or not this is the case.

Problem:

- Compute a binary search tree that minimizes the weighted lookup cost.

Optimal Binary Search Trees

Given (as input):

- A set of values to be stored as keys in a binary search tree
- The frequency of access of each value.
- The frequencies might add up to 1 , in which case they are probabilities, but the algorithm works whether or not this is the case.
Problem:
- Compute a binary search tree that minimizes the weighted lookup cost.
The weighted lookup cost in a binary tree with n nodes is:

$$
\sum_{i=1}^{n} p_{i} c_{i}
$$

Optimal Binary Search Trees

Given (as input):

- A set of values to be stored as keys in a binary search tree
- The frequency of access of each value.
- The frequencies might add up to 1 , in which case they are probabilities, but the algorithm works whether or not this is the case.
Problem:
- Compute a binary search tree that minimizes the weighted lookup cost.
The weighted lookup cost in a binary tree with n nodes is:

$$
\sum_{i=1}^{n} p_{i} c_{i}
$$

- $p_{i}=$ probability (frequency) of accessing node i

Optimal Binary Search Trees

Given (as input):

- A set of values to be stored as keys in a binary search tree
- The frequency of access of each value.
- The frequencies might add up to 1 , in which case they are probabilities, but the algorithm works whether or not this is the case.
Problem:
- Compute a binary search tree that minimizes the weighted lookup cost.
The weighted lookup cost in a binary tree with n nodes is:

$$
\sum_{i=1}^{n} p_{i} c_{i}
$$

- $p_{i}=$ probability (frequency) of accessing node i
- $c_{i}=$ cost of accessing node $i=1+\operatorname{depth}($ node $i)$

Example

Example

Suppose we have the following data values and frequency values:

i	Data	p_{i}
1	A	.26
2	B	.06
3	C	.24
4	D	.04
5	E	.16
6	F	.10
7	G	.14

Example

Suppose we have the following data values and frequency values:

i	Data	p_{i}
1	A	.26
2	B	.06
3	C	.24
4	D	.04
5	E	.16
6	F	.10
7	G	.14

Example

Suppose we have the following data values and frequency values:

i	Data	p_{i}
1	A	.26
2	B	.06
3	C	.24
4	D	.04
5	E	.16
6	F	.10
7	G	.14

One possible binary search tree:

Example

Suppose we have the following data values and frequency values:

i	Data	p_{i}
1	A	.26
2	B	.06
3	C	.24
4	D	.04
5	E	.16
6	F	.10
7	G	.14

One possible binary search tree:

Weighted lookup cost is 2.76 :

i	Node	p_{i}	c_{i}	$p_{i} c_{i}$
1	A	.26	3	.78
2	B	.06	2	.12
3	C	.24	3	.72
4	D	.04	1	.04
5	E	.16	3	.48
6	F	.10	2	.20
7	G	.14	3	.42

Example

Suppose we have the following data values and frequency values:

i	Data	p_{i}
1	A	.26
2	B	.06
3	C	.24
4	D	.04
5	E	.16
6	F	.10
7	G	.14

One possible binary search tree: (non-optimal)

Weighted lookup cost is 2.76 :

i	Node	p_{i}	c_{i}	$p_{i} c_{i}$
1	A	.26	3	.78
2	B	.06	2	.12
3	C	.24	3	.72
4	D	.04	1	.04
5	E	.16	3	.48
6	F	.10	2	.20
7	G	.14	3	.42

Problem Statement

Problem Statement

Input: A list of data values and their frequency values

Problem Statement

Input: A list of data values and their frequency values

- K_{1}, \ldots, K_{n} are the keys

Problem Statement

Input: A list of data values and their frequency values

- K_{1}, \ldots, K_{n} are the keys
- We assume that the keys are distinct and in sorted order:

$$
K_{1}<K_{2}<\cdots<K_{n} .
$$

Problem Statement

Input: A list of data values and their frequency values

- K_{1}, \ldots, K_{n} are the keys
- We assume that the keys are distinct and in sorted order:

$$
K_{1}<K_{2}<\cdots<K_{n} .
$$

- $p_{1}, \ldots p_{n}$ are the corresponding frequency values

Problem Statement

Input: A list of data values and their frequency values

- K_{1}, \ldots, K_{n} are the keys
- We assume that the keys are distinct and in sorted order:

$$
K_{1}<K_{2}<\cdots<K_{n} .
$$

- $p_{1}, \ldots p_{n}$ are the corresponding frequency values

Output: a binary search tree of smallest weighted lookup cost.

Problem Statement

Input: A list of data values and their frequency values

- K_{1}, \ldots, K_{n} are the keys
- We assume that the keys are distinct and in sorted order:

$$
K_{1}<K_{2}<\cdots<K_{n} .
$$

- $p_{1}, \ldots p_{n}$ are the corresponding frequency values

Output: a binary search tree of smallest weighted lookup cost.

Note:

Problem Statement

Input: A list of data values and their frequency values

- K_{1}, \ldots, K_{n} are the keys
- We assume that the keys are distinct and in sorted order:

$$
K_{1}<K_{2}<\cdots<K_{n} .
$$

- $p_{1}, \ldots p_{n}$ are the corresponding frequency values

Output: a binary search tree of smallest weighted lookup cost.

Note:

- We assume all searches are successful (i.e., every search request is for one of the n keys K_{1}, \ldots, K_{n}.)

Problem Statement

Input: A list of data values and their frequency values

- K_{1}, \ldots, K_{n} are the keys
- We assume that the keys are distinct and in sorted order:

$$
K_{1}<K_{2}<\cdots<K_{n} .
$$

- $p_{1}, \ldots p_{n}$ are the corresponding frequency values

Output: a binary search tree of smallest weighted lookup cost.

Note:

- We assume all searches are successful (i.e., every search request is for one of the n keys K_{1}, \ldots, K_{n}.)
- The generalization to allowing unsuccessful searches is discussed in [CLRS].

Finding Optimal Binary Tree

Finding Optimal Binary Tree

Define $E(i, j)=$ the weighted lookup cost of the binary search tree with lowest weighted lookup cost on the keys K_{i}, \ldots, K_{j}.

Finding Optimal Binary Tree

Define $E(i, j)=$ the weighted lookup cost of the binary search tree with lowest weighted lookup cost on the keys K_{i}, \ldots, K_{j}.
Goal: $E(1, n)$

Finding Optimal Binary Tree

Define $E(i, j)=$ the weighted lookup cost of the binary search tree with lowest weighted lookup cost on the keys K_{i}, \ldots, K_{j}.
Goal: $E(1, n)$
Base cases:

Finding Optimal Binary Tree

Define $E(i, j)=$ the weighted lookup cost of the binary search tree with lowest weighted lookup cost on the keys K_{i}, \ldots, K_{j}.
Goal: $E(1, n)$
Base cases:

- Tree with 1 node: $E(i, i)=p_{i}$

Finding Optimal Binary Tree

Define $E(i, j)=$ the weighted lookup cost of the binary search tree with lowest weighted lookup cost on the keys K_{i}, \ldots, K_{j}.
Goal: $E(1, n)$
Base cases:

- Tree with 1 node: $E(i, i)=p_{i}$

- Tree with 0 nodes: $E(i, i-1)=0$

Finding Optimal Binary Tree

Define $E(i, j)=$ the weighted lookup cost of the binary search tree with lowest weighted lookup cost on the keys K_{i}, \ldots, K_{j}.
Goal: $E(1, n)$
Base cases:

- Tree with 1 node: $E(i, i)=p_{i}$

- Tree with 0 nodes: $E(i, i-1)=0$

We need to develop a recurrence equation...

Finding Optimal Binary Tree: Develop recurrence equation

Finding Optimal Binary Tree: Develop recurrence equation

To build the optimal binary tree on the set of keys K_{i}, \ldots, K_{j} :

Finding Optimal Binary Tree: Develop recurrence equation

To build the optimal binary tree on the set of keys K_{i}, \ldots, K_{j} :

- Suppose the root is K_{r}, where $i \leq r \leq j$

Finding Optimal Binary Tree: Develop recurrence equation

To build the optimal binary tree on the set of keys K_{i}, \ldots, K_{j} :

- Suppose the root is K_{r}, where $i \leq r \leq j$
- The left subtree will be the optimal binary tree on the keys K_{i}, \ldots, K_{r-1}

Finding Optimal Binary Tree: Develop recurrence equation

To build the optimal binary tree on the set of keys K_{i}, \ldots, K_{j} :

- Suppose the root is K_{r}, where $i \leq r \leq j$
- The left subtree will be the optimal binary tree on the keys K_{i}, \ldots, K_{r-1}
- Note that if $r=i$, this is an empty tree

Finding Optimal Binary Tree: Develop recurrence equation

To build the optimal binary tree on the set of keys K_{i}, \ldots, K_{j} :

- Suppose the root is K_{r}, where $i \leq r \leq j$
- The left subtree will be the optimal binary tree on the keys K_{i}, \ldots, K_{r-1}
- Note that if $r=i$, this is an empty tree
- The right subtree will be the optimal binary tree on the keys K_{r+1}, \ldots, K_{j}

Finding Optimal Binary Tree: Develop recurrence equation

To build the optimal binary tree on the set of keys K_{i}, \ldots, K_{j} :

- Suppose the root is K_{r}, where $i \leq r \leq j$
- The left subtree will be the optimal binary tree on the keys K_{i}, \ldots, K_{r-1}
- Note that if $r=i$, this is an empty tree
- The right subtree will be the optimal binary tree on the keys K_{r+1}, \ldots, K_{j}
- Note that if $r=j$, this is an empty tree

Develop recurrence equation [continued]

Develop recurrence equation [continued]

Develop recurrence equation [continued]

Observation:

Develop recurrence equation [continued]

Observation:

- The weighted cost of the optimal tree on K_{i}, \ldots, K_{r-1} is $E(i, r-1)$.

Develop recurrence equation [continued]

Observation:

- The weighted cost of the optimal tree on K_{i}, \ldots, K_{r-1} is $E(i, r-1)$.
- When we make this tree a subtree of the tree rooted at K_{r}, we push each node in the subtree down one level, increasing the cost of each node by 1 .

Develop recurrence equation [continued]

Observation:

- The weighted cost of the optimal tree on K_{i}, \ldots, K_{r-1} is $E(i, r-1)$.
- When we make this tree a subtree of the tree rooted at K_{r}, we push each node in the subtree down one level, increasing the cost of each node by 1 .
- So the total weighted cost of the nodes K_{i}, \ldots, K_{r-1} in the tree rooted at K_{r} is is

$$
E(i, r-1)+p_{i}+p_{i+1}+\ldots+p_{r-1} .
$$

Develop recurrence equation [continued]

Observation:

- The weighted cost of the optimal tree on K_{i}, \ldots, K_{r-1} is $E(i, r-1)$.
- When we make this tree a subtree of the tree rooted at K_{r}, we push each node in the subtree down one level, increasing the cost of each node by 1 .
- So the total weighted cost of the nodes K_{i}, \ldots, K_{r-1} in the tree rooted at K_{r} is is

$$
E(i, r-1)+p_{i}+p_{i+1}+\ldots+p_{r-1} .
$$

- Similarly, the total weighted cost of the nodes K_{r+1}, \ldots, K_{j} is

$$
E(r+1, j)+p_{r+1}+\ldots+p_{j} .
$$

Develop recurrence equation [continued]

Develop recurrence equation [continued]

Develop recurrence equation [continued]

As we just observed:

Develop recurrence equation [continued]

As we just observed:

- The total weighted cost of the nodes K_{i}, \ldots, K_{r-1} is

$$
E(i, r-1)+p_{i}+\ldots+p_{r-1} .
$$

Develop recurrence equation [continued]

As we just observed:

- The total weighted cost of the nodes K_{i}, \ldots, K_{r-1} is

$$
E(i, r-1)+p_{i}+\ldots+p_{r-1} .
$$

- The total weighted cost of the nodes K_{r+1}, \ldots, K_{j} is

$$
E(r+1, j)+p_{r+1}+\ldots+p_{j} .
$$

Develop recurrence equation [continued]

As we just observed:

- The total weighted cost of the nodes K_{i}, \ldots, K_{r-1} is

$$
E(i, r-1)+p_{i}+\ldots+p_{r-1} .
$$

- The total weighted cost of the nodes K_{r+1}, \ldots, K_{j} is

$$
E(r+1, j)+p_{r+1}+\ldots+p_{j} .
$$

The weighted cost of the root node is $1 \cdot p_{r}=p_{r}$.

Develop recurrence equation [continued]

As we just observed:

- The total weighted cost of the nodes K_{i}, \ldots, K_{r-1} is

$$
E(i, r-1)+p_{i}+\ldots+p_{r-1} .
$$

- The total weighted cost of the nodes K_{r+1}, \ldots, K_{j} is

$$
E(r+1, j)+p_{r+1}+\ldots+p_{j} .
$$

The weighted cost of the root node is $1 \cdot p_{r}=p_{r}$.
Hence the weighted cost of the tree is:

Develop recurrence equation [continued]

As we just observed:

- The total weighted cost of the nodes K_{i}, \ldots, K_{r-1} is

$$
E(i, r-1)+p_{i}+\ldots+p_{r-1} .
$$

- The total weighted cost of the nodes K_{r+1}, \ldots, K_{j} is

$$
E(r+1, j)+p_{r+1}+\ldots+p_{j} .
$$

The weighted cost of the root node is $1 \cdot p_{r}=p_{r}$.
Hence the weighted cost of the tree is:

$$
E(i, r-1)+E(r+1, j)+p_{i}+\ldots+p_{r-1}+p_{r}+p_{r+1}+\ldots+p_{j} .
$$

Develop recurrence equation [continued]

Develop recurrence equation [continued]

Develop recurrence equation [continued]

- We have just seen that weighted cost of the tree is:

$$
E(i, r-1)+E(r+1, j)+p_{i}+\ldots+p_{j}
$$

Develop recurrence equation [continued]

- We have just seen that weighted cost of the tree is:

$$
E(i, r-1)+E(r+1, j)+p_{i}+\ldots+p_{j}
$$

- We can simplify this by defining $W(i, j)$ to be the sum of the frequencies of the keys K_{i}, \ldots, K_{j} :

Develop recurrence equation [continued]

- We have just seen that weighted cost of the tree is:

$$
E(i, r-1)+E(r+1, j)+p_{i}+\ldots+p_{j}
$$

- We can simplify this by defining $W(i, j)$ to be the sum of the frequencies of the keys K_{i}, \ldots, K_{j} :

$$
W(i, j)=p_{i}+\ldots+p_{j}
$$

Develop recurrence equation [continued]

- We have just seen that weighted cost of the tree is:

$$
E(i, r-1)+E(r+1, j)+p_{i}+\ldots+p_{j}
$$

- We can simplify this by defining $W(i, j)$ to be the sum of the frequencies of the keys K_{i}, \ldots, K_{j} :

$$
W(i, j)=p_{i}+\ldots+p_{j}
$$

- With this simplification, the cost of the best tree we can build on keys K_{i}, \ldots, K_{j} with K_{r} as the root is:

Develop recurrence equation [continued]

- We have just seen that weighted cost of the tree is:

$$
E(i, r-1)+E(r+1, j)+p_{i}+\ldots+p_{j}
$$

- We can simplify this by defining $W(i, j)$ to be the sum of the frequencies of the keys K_{i}, \ldots, K_{j} :

$$
W(i, j)=p_{i}+\ldots+p_{j}
$$

- With this simplification, the cost of the best tree we can build on keys K_{i}, \ldots, K_{j} with K_{r} as the root is:

$$
E(i, r-1)+E(r+1, j)+W(i, j)
$$

Develop recurrence equation [finally!]

Develop recurrence equation [finally!]

- We have just seen that the cost of the best tree we can build on keys K_{i}, \ldots, K_{j} with K_{r} as the root is:

$$
E(i, r-1)+E(r+1, j)+W(i, j)
$$

Develop recurrence equation [finally!]

- We have just seen that the cost of the best tree we can build on keys K_{i}, \ldots, K_{j} with K_{r} as the root is:

$$
E(i, r-1)+E(r+1, j)+W(i, j)
$$

- To get the best tree, we need to pick the best root.

Develop recurrence equation [finally!]

- We have just seen that the cost of the best tree we can build on keys K_{i}, \ldots, K_{j} with K_{r} as the root is:

$$
E(i, r-1)+E(r+1, j)+W(i, j)
$$

- To get the best tree, we need to pick the best root.
- So our recurrence equation is

Develop recurrence equation [finally!]

- We have just seen that the cost of the best tree we can build on keys K_{i}, \ldots, K_{j} with K_{r} as the root is:

$$
E(i, r-1)+E(r+1, j)+W(i, j)
$$

- To get the best tree, we need to pick the best root.
- So our recurrence equation is

$$
E(i, j)=\min _{i \leq r \leq j}(E(i, r-1)+E(r+1, j)+W(i, j)) .
$$

Develop recurrence equation [finally!]

- We have just seen that the cost of the best tree we can build on keys K_{i}, \ldots, K_{j} with K_{r} as the root is:

$$
E(i, r-1)+E(r+1, j)+W(i, j)
$$

- To get the best tree, we need to pick the best root.
- So our recurrence equation is

$$
E(i, j)=\min _{i \leq r \leq j}(E(i, r-1)+E(r+1, j)+W(i, j)) .
$$

Specifying the Solution

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq n+1$ and $i-1 \leq j \leq n\}$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq n+1$ and $i-1 \leq j \leq n\}$

- Note: The pair $(i, j)=(n+1, n)$ needs to be handled, which is why the upper limit on the range of i is $n+1$ rather than n.

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq n+1$ and $i-1 \leq j \leq n\}$

- Note: The pair $(i, j)=(n+1, n)$ needs to be handled, which is why the upper limit on the range of i is $n+1$ rather than n.

2. Function / Memoization table definition: $E(i, j)$ is the minimum weighted lookup cost for a binary search tree on the keys K_{i}, \ldots, K_{j}, where p_{i} is the frequency of key K_{i}.

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq n+1$ and $i-1 \leq j \leq n\}$

- Note: The pair $(i, j)=(n+1, n)$ needs to be handled, which is why the upper limit on the range of i is $n+1$ rather than n.

2. Function / Memoization table definition: $E(i, j)$ is the minimum weighted lookup cost for a binary search tree on the keys K_{i}, \ldots, K_{j}, where p_{i} is the frequency of key K_{i}.
3. Goal: $E(1, n)$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq n+1$ and $i-1 \leq j \leq n\}$

- Note: The pair $(i, j)=(n+1, n)$ needs to be handled, which is why the upper limit on the range of i is $n+1$ rather than n.

2. Function / Memoization table definition: $E(i, j)$ is the minimum weighted lookup cost for a binary search tree on the keys K_{i}, \ldots, K_{j}, where p_{i} is the frequency of key K_{i}.
3. Goal: $E(1, n)$
4. Initial values: $E(i, i-1)=0$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq n+1$ and $i-1 \leq j \leq n\}$

- Note: The pair $(i, j)=(n+1, n)$ needs to be handled, which is why the upper limit on the range of i is $n+1$ rather than n.

2. Function / Memoization table definition: $E(i, j)$ is the minimum weighted lookup cost for a binary search tree on the keys K_{i}, \ldots, K_{j}, where p_{i} is the frequency of key K_{i}.
3. Goal: $E(1, n)$
4. Initial values: $E(i, i-1)=0$

- Note: Earlier we stated an additional set of initial values: $E(i, i)=p_{i}$. Since these values follow from the stated initial values and the recurrence equation, they do not need to be given as initial values.

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq n+1$ and $i-1 \leq j \leq n\}$

- Note: The pair $(i, j)=(n+1, n)$ needs to be handled, which is why the upper limit on the range of i is $n+1$ rather than n.

2. Function / Memoization table definition: $E(i, j)$ is the minimum weighted lookup cost for a binary search tree on the keys K_{i}, \ldots, K_{j}, where p_{i} is the frequency of key K_{i}.
3. Goal: $E(1, n)$
4. Initial values: $E(i, i-1)=0$

- Note: Earlier we stated an additional set of initial values: $E(i, i)=p_{i}$. Since these values follow from the stated initial values and the recurrence equation, they do not need to be given as initial values.

5. Recurrence:

$$
E(i, j)=\min _{i \leq r \leq j}(E(i, r-1)+E(r+1, j)+W(i, j)),
$$

Specifying the Solution

1. Subproblem domain $\{(i, j): 1 \leq i \leq n+1$ and $i-1 \leq j \leq n\}$

- Note: The pair $(i, j)=(n+1, n)$ needs to be handled, which is why the upper limit on the range of i is $n+1$ rather than n.

2. Function / Memoization table definition: $E(i, j)$ is the minimum weighted lookup cost for a binary search tree on the keys K_{i}, \ldots, K_{j}, where p_{i} is the frequency of key K_{i}.
3. Goal: $E(1, n)$
4. Initial values: $E(i, i-1)=0$

- Note: Earlier we stated an additional set of initial values: $E(i, i)=p_{i}$. Since these values follow from the stated initial values and the recurrence equation, they do not need to be given as initial values.

5. Recurrence:

$$
E(i, j)=\min _{i \leq r \leq j}(E(i, r-1)+E(r+1, j)+W(i, j)),
$$

where $W(i, j)=p_{i}+\cdots+p_{j}$.

Computation of $W(i, j)$

Computation of $W(i, j)$

- The values of

$$
W(i, j)=p_{i}+\cdots+p_{j}
$$

can be precomputed in $O\left(n^{2}\right)$ time:

Computation of $W(i, j)$

- The values of

$$
W(i, j)=p_{i}+\cdots+p_{j}
$$

can be precomputed in $O\left(n^{2}\right)$ time:

$$
\begin{aligned}
& \text { for } i=1 \text { to } n+1: \\
& W[i, i-1]=0 \\
& \quad \text { for } j=i \text { to } n \\
& \\
& W[i, j]=W[i, j-1]+p[j]
\end{aligned}
$$

Code to compute the cost of the optimal tree

Code to compute the cost of the optimal tree

```
def OptimalTreeCost(p):
    for i = 1 to n+1:
    E[i,i-1] = 0
    W[i,i-1] = 0
    for j = i to n
            W[i,j] = W[i,j-1] + p[j]
    for size = 1 to n:
    for i = 1 to n - size + 1 do
            j = i + size - 1
            E[i,j] = +\infty;
            for r = i to j:
            x = E[i,r-1] + E[r+1,j] + W[i,j]
            if x < E[i,j]:
                        E[i,j] = x
    return(E)
```


Modified code to compute the root of each optimal subtree

Modified code to compute the root of each optimal subtree

 To compute the optimal tree, we need to store the root of each optimal subtree. We compute a second array root which tells us the best root of the tree for the keys K_{i}, \ldots, K_{j} :
Modified code to compute the root of each optimal subtree

 To compute the optimal tree, we need to store the root of each optimal subtree. We compute a second array root which tells us the best root of the tree for the keys K_{i}, \ldots, K_{j} :```
def OptimalTreeCost(p):
for i = 1 to n+1:
 E[i,i-1] = 0
 W[i,i-1] = 0
 for j = i to n
 W[i,j] = W[i,j-1] + p[j]
for size = 1 to n:
 for i = 1 to n - size + 1 do
 j = i + size - 1
 E[i,j] = +\infty;
 for r = i to j:
 x = E[i,r-1] + E[r+1,j] + W[i,j]
 if x < E[i,j]:
 E[i,j] = x
 root[i,j] = r
```

return(E, root)

## Code generate the optimal tree

## Code generate the optimal tree

Once we have computed the arrays E and root, the following pseudocode computes the optimal binary tree:

```
def OptimalTree(root,keys):
// keys is the array of key values, indexed from 1 to n
def buildTree(i,j):
 if j < i : return null
 r = root[i,j]
 node = new binary tree node
 node.key = keys[r]
 node.leftchild = buildTree(i,r-1)
 node.rightchild = buildTree(r+1,j)
 return node
return buildTree(1,n)
```


## Solution to our example

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |



## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |



## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | 0 | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | - | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |

CompSci 161—Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |



CompSci 161—Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| $0$ | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161—Spring 2022—ⒸM. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $\begin{gathered} 0 \\ - \end{gathered}$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| ${ }_{0}$ | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | 0 | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | 0 | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| ${ }_{0}$ | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | 0 | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | 0 | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| ${ }_{0}$ | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | 0 | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | 0 | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| ${ }_{0}$ | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | 0 | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | 0 | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022—(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | 0 |



CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | 0 |



CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | 0 | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $\begin{gathered} 0 \\ - \end{gathered}$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | 0 | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| $0$ | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| ${ }_{0}$ | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $0$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | $0$ | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| 0 | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | 0 | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | $\begin{gathered} 0 \\ - \end{gathered}$ | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | 0 | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |



CompSci 161 —Spring 2022-(c)M. B. Dillencourt—University of California, Irvine

## Solution to our example

| $i$ | Data | $p_{i}$ |
| :---: | :---: | :---: |
| 1 | $A$ | .26 |
| 2 | $B$ | .06 |
| 3 | $C$ | .24 |
| 4 | $D$ | .04 |
| 5 | $E$ | .16 |
| 6 | $F$ | .10 |
| 7 | $G$ | .14 |


| $0$ | $\begin{gathered} 0.26 \\ 1 \end{gathered}$ | $\begin{gathered} 0.38 \\ 1 \end{gathered}$ | $\begin{gathered} 0.92 \\ 1 \end{gathered}$ | $\begin{gathered} 1.02 \\ 3 \end{gathered}$ | $\begin{gathered} 1.38 \\ 3 \end{gathered}$ | $\begin{gathered} 1.68 \\ 3 \end{gathered}$ | $\begin{gathered} 2.20 \\ 3 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0$ | $\begin{gathered} 0.06 \\ 2 \end{gathered}$ | $\begin{gathered} 0.36 \\ 3 \end{gathered}$ | $\begin{gathered} 0.44 \\ 3 \end{gathered}$ | $\begin{gathered} 0.80 \\ 3 \end{gathered}$ | $\begin{gathered} 1.10 \\ 3 \end{gathered}$ | $\begin{gathered} 1.52 \\ 5 \end{gathered}$ |
|  |  | $0$ | $\begin{gathered} 0.24 \\ 3 \end{gathered}$ | $\begin{gathered} 0.32 \\ 3 \end{gathered}$ | $\begin{gathered} 0.68 \\ 3 \end{gathered}$ | $\begin{gathered} 0.96 \\ 5 \end{gathered}$ | $\begin{gathered} 1.34 \\ 5 \end{gathered}$ |
|  |  |  | $0$ | $\begin{gathered} 0.04 \\ 4 \end{gathered}$ | $\begin{gathered} 0.24 \\ 5 \end{gathered}$ | $\begin{gathered} 0.44 \\ 5 \end{gathered}$ | $\begin{gathered} 0.82 \\ 5 \end{gathered}$ |
|  |  |  |  | 0 | $\begin{gathered} 0.16 \\ 5 \end{gathered}$ | $\begin{gathered} 0.36 \\ 5 \end{gathered}$ | $\begin{gathered} 0.70 \\ 6 \end{gathered}$ |
|  |  |  |  |  | 0 | $\begin{gathered} 0.10 \\ 6 \end{gathered}$ | $\begin{gathered} 0.34 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  | $0$ | $\begin{gathered} 0.14 \\ 7 \end{gathered}$ |
|  |  |  |  |  |  |  | $0$ |

Weighted lookup cost $=2.20$

CompSci 161—Spring 2022—ⒸM. B. Dillencourt—University of California, Irvine

